Challenger App

No.1 PSC Learning App

1M+ Downloads
3, 9, 15, ..................... എന്ന ശ്രേണിയിലെ ആദ്യത്തെ 30 പദങ്ങളുടെ തുക അതിനടുത്ത 30 പദങ്ങളുടെ തുകയിൽ നിന്ന് കുറച്ചാൽ എത്ര കിട്ടും ?

A5400

B4500

C5600

D5300

Answer:

A. 5400

Read Explanation:

ആദ്യപദം a = 3 പൊതു വ്യത്യാസം d = 6 ശ്രേണിയിലെ ആദ്യ 30 പദങ്ങളുടെ തുക = n/2 × {2a + (n - 1)d } = 30/2 × { 2 × 3 + ( 30 - 1)6} = 15(6 + 29 × 6) = 15(180) = 2700 ശ്രേണിയിലെ ആദ്യത്തെ 60 പദങ്ങളുടെ തുക = n/2 × {2a + (n - 1)d } = 60/2 × {2 × 3 + ( 60 - 1)6} = 30(6 + 59 × 6) =30 × 360 = 10800 ശ്രേണിയിലെ 31 മുതൽ 60 വരെയുള്ള പദങ്ങളുടെ തുക = 10800 - 2700 = 8100 ശ്രേണിയിലെ ആദ്യത്തെ 30 പദങ്ങളുടെ തുക അതിനടുത്ത 30 പദങ്ങളുടെ തുകയിൽ നിന്ന് കുറച്ചാൽ = 8100 - 2700 = 5400


Related Questions:

200നും 300നും ഇടയ്ക്ക് 7 കൊണ്ട് ഹരിക്കാവുന്ന സംഖ്യകളുടെ എണ്ണം എത്ര?
Find 3+6+9+ ... + 180.
Which term of the arithmetic progression 5,13, 21...... is 181?
A,B,C,D എന്നിവ യഥാക്രമം തുടർച്ചയായ നാല് ഇരട്ട സംഖ്യകളാണ്, അവയുടെ ശരാശരി 65 ആണ്. A, D എന്നിവയുടെ ഗുണനം എന്താണ്?
Seventh term of an arithmetic sequence is 120 and its 8th term is 119. What is the 120th term of this sequence?