App Logo

No.1 PSC Learning App

1M+ Downloads
A alone can complete a work in 6 days and B alone can complete the same work in 8 days. In how many days both A and B together can complete the same work?

A48/13 days

B35/13 days

C24/9 days

D24/7 days

Answer:

D. 24/7 days

Read Explanation:

Solution:

Given:

A alone can complete a work in 6 days and B alone can complete the same work in 8 days.

Formula Used: If A can do a work in ‘x’ days, B can do the same work in ‘y’ days, then time taken by them to complete the work together = x × y/(x + y) days

Calculation:

Using the above formulae, we have

Time taken by them to complete the work together = 6 × 8/(6 + 8) = 24/7 days

∴ Required time = 24/7 days.

Alternate method:

image.png

A and B together Complete the Same piece of work in

Total Efficiency of A and B is 4+3=7

24/7 days.


Related Questions:

Thirty men take 20 days to complete a job working 9 hours a day. How many hour a day should 40 men take in 20 days to complete the job?
A യും B യും ഒരുമിച്ച് 40 ദിവസത്തിനുള്ളിൽ ഒരു ജോലി ചെയ്യുന്നു. B യും C യും ഒരുമിച്ച് 25 ദിവസത്തിനുള്ളിൽ ചെയ്യുന്നു. എയും ബിയും ഒരുമിച്ച് ജോലി ചെയ്യാൻ തുടങ്ങി, എ 6 ദിവസത്തിന് ശേഷം ജോലി ഉപേക്ഷിച്ചു, ബി 8 ദിവസത്തിന് ശേഷം ജോലി ഉപേക്ഷിച്ചു. A പോയതിനു ശേഷം, C ജോലിയിൽ ചേരുകയും C 40.5 ദിവസത്തിനുള്ളിൽ ജോലി പൂർത്തിയാക്കുകയും ചെയ്തു, C-യ്ക്ക് മാത്രം എത്ര ദിവസത്തിനുള്ളിൽ ജോലി പൂർത്തിയാക്കാൻ കഴിയും?
A can do a work in 12 days, B can do it in 20 days and C in 15 days. If they work together the number of days needed to complete the work is:
A, B and C can do a piece of work in 12 days, 14 days and 16 days respectively. All three of them started the work together and after working for four days C leaves the job, B left the job 4 days before completion of the work. Find the approximate time required to complete the work. (in days)
A and B can together complete a task in 18 hours. After 6 hours A leaves. B takes 36 hours to finish rest of the task. How many hours would A have taken to do the task, if he worked alone?