Challenger App

No.1 PSC Learning App

1M+ Downloads
A and B can fill a tank in 10 hrs and 15 hrs respectively, but C can empty in 12 hrs. Pipes A, B and C starts at 1 pm, 2 pm and 3 pm respectively. At what time will the tank be totally filled?

A9.30 PM

B10.45 PM

C11 PM

D11.48 PM

Answer:

D. 11.48 PM

Read Explanation:

  1. Calculate Individual Rates:

    • Pipe A fills the tank in 10 hours. Its rate is 1/10 of the tank per hour.

    • Pipe B fills the tank in 15 hours. Its rate is 1/15 of the tank per hour.

    • Pipe C empties the tank in 12 hours. Its rate is -1/12 of the tank per hour (negative sign indicates emptying).

  2. Determine Tank Capacity (using LCM):

    • Find the LCM of 10, 15, and 12.

    • LCM(10, 15, 12) = 60. Assume the tank capacity is 60 units.

    • In this case:

      • Rate of A = 60/10 = 6 units/hr

      • Rate of B = 60/15 = 4 units/hr

      • Rate of C = -60/12 = -5 units/hr

  3. Calculate Work Done Before All Pipes Operate:

    • Pipe A starts at 1 PM.

    • Pipe B starts at 2 PM.

    • Pipe C starts at 3 PM.

    • Between 1 PM and 3 PM (2 hours), only pipe A is working.

    • Work done by A in 2 hours = 2 hrs * (1/10 tank/hr) = 2/10 = 1/5 tank.

    • Alternatively, using units: 2 hrs * 6 units/hr = 12 units. Remaining capacity = 60 - 12 = 48 units.

  4. Calculate Combined Rate When All Pipes are Operational:

    • From 3 PM onwards, all three pipes A, B, and C are working.

    • Combined rate = Rate of A + Rate of B + Rate of C

    • Combined rate = (1/10) + (1/15) + (-1/12) tank/hr

    • To add these fractions, find a common denominator (LCM of 10, 15, 12 is 60):

    • Combined rate = (6/60) + (4/60) - (5/60) = (6 + 4 - 5) / 60 = 5/60 = 1/12 tank/hr.

    • Alternatively, using units: Combined rate = 6 + 4 - 5 = 5 units/hr.

  5. Calculate Remaining Time to Fill the Tank:

    • At 3 PM, 1/5 of the tank is already filled (or 12 units are filled).

    • Remaining portion to be filled = 1 - (1/5) = 4/5 tank.

    • Alternatively, remaining units = 60 - 12 = 48 units.

    • Time required = Remaining Work / Combined Rate

    • Time = (4/5 tank) / (1/12 tank/hr) = (4/5) * 12 = 48/5 hours.

    • Alternatively, Time = 48 units / 5 units/hr = 9.6 hours.

  6. Convert Time and Determine Final Filling Time:

    • 9.6 hours needs to be converted into hours and minutes.

    • 9.6 hours = 9 hours + 0.6 hours

    • 0.6 hours * 60 minutes/hour = 36 minutes.

    • So, it takes 9 hours and 36 minutes from 3 PM to fill the rest of the tank.

    • Add this duration to the time when all pipes started working together (3 PM):

    • 3:00 PM + 9 hours 36 minutes = 12:36 AM (next day).

    • Correction: Let's re-check the calculation of remaining work if we use the LCM method. At 3 PM, A has worked for 2 hours and B for 1 hour.

    • Work done by A from 1 PM to 3 PM: 2 hrs * 6 units/hr = 12 units.

    • Work done by B from 2 PM to 3 PM: 1 hr * 4 units/hr = 4 units.

    • Total filled by 3 PM = 12 + 4 = 16 units.

    • Remaining capacity = 60 - 16 = 44 units.

    • Time to fill remaining 44 units at a combined rate of 5 units/hr = 44 units / 5 units/hr = 8.8 hours.

    • Convert 8.8 hours: 8 hours + 0.8 hours * 60 minutes/hour = 8 hours and 48 minutes.

    • This time is calculated from 3 PM (when all pipes started working).

    • So, the tank will be filled at: 3:00 PM + 8 hours 48 minutes = 11:48 PM.


Related Questions:

A can do a work in 6 days and B in 9 days. How many days will both take together to complete the work?
6 പൈപ്പുകൾ ഉപയോഗിച്ച് ഒരു ടാങ്കിൽ വെള്ളം നിറയ്ക്കാൻ 1 മണിക്കൂർ 20 മിനിറ്റ് വേണം . എന്നാൽ അഞ്ചു പൈപ്പുകൾ ഉപയോഗിച്ചാണ് നിറയ്ക്കുന്നത് എങ്കിൽ എത്ര സമയം വേണം ?
10 ദിവസം കൊണ്ടാണ് A ഒരു ജോലി പൂർത്തിയാക്കുന്നത്. A 6 ദിവസം ജോലി ചെയ്തു. ശേഷം വിട്ടുപോകുന്നു. ശേഷിക്കുന്ന ജോലി B 2 ദിവസം കൊണ്ട് തീർക്കുന്നു. B ഒറ്റയ്ക്ക് എത്ര ദിവസം കൊണ്ട് ജോലി പൂർത്തിയാക്കും?
A fort had provision of food for 150 men for 85 days. After 15 days, 25 men left the fort. Find the number of days for which the remaining food will last.
30 പേർ ചേർന്ന് 8 ദിവസം കൊണ്ട് ചെയ്തു തീർക്കുന്ന ഒരു ജോലി 40 പേർ ചേർന്ന് എത്ര ദിവസം കൊണ്ട് ചെയ്തു തീർക്കും ?