App Logo

No.1 PSC Learning App

1M+ Downloads
A rod having a cross-sectional area of 100 x 10⁻⁶ m² is subjected to a tensile load. Based on the Tresca failure criterion, if the uniaxial yield stress of the material is 200 MPa, the failure load is:

A10 kN

B20 kN

C100 kN

D200 kN

Answer:

B. 20 kN

Read Explanation:

Given: C.S Area = 100×106m2100 \times 10 ^ {- 6} m ^ 2 = 100mm2100mm ^ 2 , Syt = 200 MPa; Since only one tensile load is acting, it will give rise to σ1\sigma_{1} whereas σ2,σ3=0\sigma_{2}, \sigma_{3} = 0 Syt2×FOS=max[σ1σ22,σ2σ32,σ3σ12]\frac{S_{yt}}{2 \times FOS}=| max[ \frac{\sigma_1-\sigma_2}{2},\frac{\sigma_2-\sigma_3}{2},\frac{\sigma_3-\sigma_1}{2}]|

[FOS=1]; syt2=σ12σ1=Sytσ1=200MPa\frac{s_{yt}}{2}=\frac{\sigma_1}{2}\Rightarrow\sigma_1=S_{yt}\Rightarrow \sigma_1=200 MPa and

σ1=LoadC.S.Area\sigma_1=\frac{Load}{C.S.Area} 200=Load100Load=2×104N=20kN\Rightarrow 200=\frac{Load}{100} \Rightarrow Load=2\times 10^4 N=20kN


Related Questions:

Region of safety for maximum principal stress theory under bi-axial stress is shown by:
The centre of the 'Mohr's circle' for a two-dimensional stress system lies
Von mises and Tresca criteria give different yield stress for
Which theory is best to estimate failure load for a ductile material ?
St. Venant proposed the - theory.