App Logo

No.1 PSC Learning App

1M+ Downloads
A set of 51 numbers in such that if we remove the fist number, the average of the remaining numbers will be reduced by 1 from the average of all the numbers, if we remove the first and second, average be reduced by 2 from the original average of 51 numbers and so on. If average of all the 51 numbers is 1000, then which of the following is true

AThe numbers can be uniquely determined using the given data

BThere exist many sets of numbers satisfying the given conditions

CSuch a set of numbers cannot exist

DData insufficient to say anything about these numbers

Answer:

A. The numbers can be uniquely determined using the given data

Read Explanation:

Understanding the Problem

  • The question describes a scenario involving a set of 51 numbers with specific properties related to their average when elements are removed from the beginning.

  • We are given that the average of all 51 numbers is 1000.

  • The core of the problem lies in how the average changes as the first number, then the first two, and so on, are removed.

Key Mathematical Concepts

  • Average: The sum of a set of numbers divided by the count of the numbers.

  • Sum from Average: The sum of a set of numbers can be calculated by multiplying the average by the count of numbers (Sum = Average * Count).

Analyzing the Given Conditions

  • Let $S_{51}$ be the sum of all 51 numbers, and $A_{51}$ be their average. We know $A_{51} = 1000$. Therefore, $S_{51} = 51 \times 1000 = 51000$.

  • When the first number ($n_1$) is removed, there are 50 numbers remaining. The average of these 50 numbers ($A_{50}$) is $A_{51} - 1$.

  • The sum of these 50 numbers is $S_{50} = S_{51} - n_1$.

  • So, $A_{50} = \frac{S_{50}}{50} = \frac{S_{51} - n_1}{50}$.

  • We are given $A_{50} = A_{51} - 1 = 1000 - 1 = 999$.

  • Substituting the values: $999 = \frac{51000 - n_1}{50}$.

  • $999\times 50 = 51000 - n_1$

  • $\rightarrow 49950 = 51000 - n_1 $

  • $\rightarrow n_1 = 51000 - 49950 = 50$.

  • Continuing this logic for subsequent removals:

  • When the first two numbers ($n_1, n_2$) are removed, the average of the remaining 49 numbers ($A_{49}$) is $A_{51} - 2$.

  • $A_{49} = 1000 - 2 = 998$.

  • The sum of these 49 numbers is $S_{49} = S_{51} - n_1 - n_2$.

  • $A_{49} = \frac{S_{49}}{49} = \frac{S_{51} - n_1 - n_2}{49}$.

  • $998 = \frac{51000 - 50 - n_2}{49} $

  • $\rightarrow 998 \times 49 = 50950 - n_2 $

  • $\rightarrow 48902 = 50950 - n_2 $

  • $\rightarrow n_2 = 50950 - 48902 = 2048$.

  • This pattern continues. For each number removed from the front, the average decreases by 1, and the count of numbers decreases by 1.


Related Questions:

An average of 5 numbers is 40. If two of them are excluded then the average of remaining numbers becomes 45. Find out the excluded numbers.
രാഹുൽ അവന്റെ നാലു വിഷയങ്ങളുടെ ആകെ മാർക്ക് കണ്ടുപിടിച്ചപ്പോൾ 125 എന്ന് കിട്ടി. എന്നാൽ ഇംഗ്ലീഷിന്റെ മാർക്ക് 41 ന് പകരം 14 ആണ് ചേർത്തിരിക്കുന്നത് എന്ന് അവന്റെ സുഹൃത്ത് കണ്ടുപിടിച്ചു. ഇംഗ്ലീഷിന്റെ യഥാർത്ഥ മാർക്കായ 41 ചേർത്തിരുന്നുവെങ്കിൽ അവന്റെ ആകെ മാർക്ക് എത ആയിരിക്കും?
ഒരു ക്ലാസിലെ 25 കുട്ടികളുടെ ശരാശരി വയസ്സ് 14, ഒരു കുട്ടി കൂടി പുതുതായി വന്നപ്പോൾ ശരാശരി 14.5 ആയാൽ പുതുതായി വന്ന കുട്ടിയുടെ പ്രായം എത്
In a set of three numbers, the average of the first two numbers is 7, the average of the last two numbers is 10, and the average of the first and the last numbers is 14. What is the average of the three numbers?
35,28,x,42,32 ഇവയുടെ ശരാശരി 36 ആയാൽ x ൻ്റെ വില എന്ത്?