A shaft is subjected to combined bending and torsional moments of 6 kN-m and 10 kN-m respectively. The equivalent torque will be equal toA136kN−m\sqrt{136}kN-m136kN−mB16kN−m16kN-m16kN−mC16kN−m\sqrt{16}kN-m16kN−mD8kN−m8kN-m8kN−mAnswer: 136kN−m\sqrt{136}kN-m136kN−m Read Explanation: Given: M = 6kN - m and T = 10kN - m The equivalent torque is given by: Teq=[M2+T2]⇒Teq=62+102=136kN−mT_{eq} =[ \sqrt {M^ 2 +T^ 2} ] \Rightarrow T_eq = \sqrt {6^ 2 +10^ 2} = \sqrt {136} kN-mTeq=[M2+T2]⇒Teq=62+102=136kN−m Read more in App