App Logo

No.1 PSC Learning App

1M+ Downloads
ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 140°. Then angle BAC is equal to∶

A38

B40

C50

D60

Answer:

C. 50

Read Explanation:

 

solution

ABCD is a cyclic quadrilateral with AB as the diameter of the circle.

∠ADC=140

∠ADC+∠ABC=180

∠ABC=180 −140 = 40

∠ACB=90 (angle subtended by a diameter at the circumference of the circle is 90)

In ΔABC we have,

∠ACB=90

∠ABC=40

∠BAC=180 − (∠ACB+∠ABC)

∠BAC=50


Related Questions:

A line joining two end points is called a/an:
വാൻ ഹേൽസിന്റെ പഠന സിദ്ധാന്തത്തിന്റെ വിവിധ ഘട്ടങ്ങളുടെ ശരിയായ ക്രമം ചുവടെ കൊടുത്തിരിക്കുന്നവയിൽ ഏതാണ് ?
The perimeter of an equilateral triangle ABC is 10.2 cm. What is the area of the triangle ?

The areas of two similar triangles are 144 cm2 and 196 cm2 respectively. If the longest side of the smaller triangle is 24 cm, then find the longest side of the larger triangle.

PQR is an isosceles triangle with sides PQ = PR = 45 cm and QR = 72 cm. PN is a median to base QR. What will be the length (in cm) of PN?