App Logo

No.1 PSC Learning App

1M+ Downloads
image.png

A1

B4

C5

D3

Answer:

A. 1

Read Explanation:

1+tan2x=sec2x1+tan^2x=sec^2x

1+cot2x=cosec2x1+cot^2x=cosec^2x

1(cosec2x)2+tan2x(sec2x)2+1sec2x\frac{1}{(cosec^2x)^2}+\frac{tan^2x}{(sec^2x)^2}+\frac{1}{sec^2x}

sin4x+sin2x×cos4xcos2x+cos2xsin^4x+\frac{sin^2x \times cos^4x}{cos^2x}+cos^2x

sin2x(sin2x+cos2x)+cos2xsin^2x(sin^2x+cos^2x)+cos^2x ------------- (sin2x+cos2x=1)(sin^2x+cos^2x=1)

sin2x×1+cos2xsin^2x\times 1+cos^2x

11


Related Questions:

What is the value of cos[(180° – θ)/2].cos[(180° – 9θ)/2] + sin[(180° – 3θ)/2].sin[(180° – 13θ)/2]?
image.png
If cotθ = 4/3, the find the value of 5sinθ + 4cosθ – 3.

In a ΔABC right triangle at B. If SinC=6061SinC=\frac{60}{61} and CosA=6061CosA=\frac{60}{61}, then find the value of the expression tanA+cot(A+C)CotC+SecASinC\frac{tanA+cot(A+C)}{CotC+SecASinC}

The value of cosec230sin245+sec260tan60cosec245sec260tan45\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}  is: