App Logo

No.1 PSC Learning App

1M+ Downloads
Express sin θ in terms of cot θ, where θ is an acute angle.

A1(1+cot2θ)\frac{1}{\sqrt{(1+cot^2\theta)}}

B(1+cot2θ)\sqrt{(1+cot^2\theta)}

C1(1+cot2θ)\frac{1}{(1+cot^2\theta)}

D(1+cot2θ)(1+cot^2\theta)

Answer:

1(1+cot2θ)\frac{1}{\sqrt{(1+cot^2\theta)}}

Read Explanation:

sin²θ + cos²θ = 1

sin θ = 1 / √(1 + cot²θ)


Related Questions:

If sinx=1237sinx=\frac{12}{37} , then what is the value of tan x?

Find (1 - cos² θ)(cot²θ + 1) - 1.
(tan57° + cot37°)/ (tan33° + cot53° ) =?

Find x if 2sin2x - 1 = 0

If tanθ=34tan\theta=\frac{3}{4} and θ is acute, then what is the value of sin θ