App Logo

No.1 PSC Learning App

1M+ Downloads
If sec3x = cosec(3x - 45°), where 3x is an acute angle, then x is equal to:

A35°

B45°

C22.5°

D27.5°

Answer:

C. 22.5°

Read Explanation:

Solution: Given: sec3x = cosec(3x - 45°) Concept used: cosec(90 - θ) = secθ Calculation: sec3x = cosec(3x - 45°) ⇒ cosec(90° - 3x) = cosec(3x - 45°) ⇒ 90 - 3x = 3x - 45° ⇒ 6x = 135° ⇒ x = 22.5° ∴ The value of x is 22.5°.


Related Questions:

image.png

The value of tan(–405°) is :

A. 1

B. –1

C. ∞

D. 0

what is the ratio sides of the triangle

1000114738.jpg

image.png

Find the value of cot2θcos2θ\sqrt{cot^2\theta-cos^2\theta}.