App Logo

No.1 PSC Learning App

1M+ Downloads
Find 3+6+9+ ... + 180.

A5490

B4950

C5400

Dഇതൊന്നുമല്ല

Answer:

A. 5490

Read Explanation:

 3+6+9+ ... + 180 can be considered as an arithmetic series. 

· First term, a = 3 

· Last term, tn = 180 

· Common difference, d = 2nd term – 1st term 

= (6-3) 

= 3 

· Number of terms, n = ? 

 

 To find the number of terms, we can use the formula to find the last term
tn
= a + (n-1) d  

180 = 3
+ (n-1) 3 

180 = 3
+ 3n – 3 

180 = 3n
 

3n = 180 

n = 180/3 

n = 60 

 

To find the total sum of the terms in an arithmetic
series, 

Sn
= n/2 [2a + (n-1)d] 

= 60/2 [(2x3)+(60-1)3] 

= 30 [6+(59x3)] 

= 30 x (6+177) 

= 30 x
183 

= 5490 


Related Questions:

4 , 11 , 18 , _____ ഈ സംഖ്യാശ്രേണിയിലെ അടുത്ത രണ്ട് സംഖ്യകൾ എഴുതുക .
7, 11, 15, 19, 23, ....... എന്ന സമാന്തര ശ്രേണിയുടെ 26-ാമത് പദം കണ്ടെത്തുക
4 , 7 , 10 , _____ എന്ന സമാന്തര ശ്രേണിയുടെ നൂറ്റി ഒന്നാം പദം എത്ര ?
ഒരു സമാന്തരശ്രേണിയുടെ 3-ാം പദം 34, 6-ാം പദം 67 ആയാൽ ആദ്യപദം ഏത്?
10, 7, 4, ... എന്ന ശ്രേണിയിലെ ഇരുപത്തിയഞ്ചാം പദം എത്ര ?