Find a point on the x-axis , which is equidistant from the points (7,6) and (3,4).A(15/2 , 0)B(5, 0)C(10, 0)D(2, 0)Answer: A. (15/2 , 0) Read Explanation: let P(a,0) be the point on the x-axis that is equidistant from the points A(7,6) and B (3,4)d=(x2−x1)2+(y2−y1)2d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=(x2−x1)2+(y2−y1)2dPA=(a−7)2+(0−6)2d_{PA}=\sqrt{(a-7)^2+(0-6)^2}dPA=(a−7)2+(0−6)2dPB=(a−3)2+(0−4)2d_{PB}=\sqrt{(a-3)^2+(0-4)^2}dPB=(a−3)2+(0−4)2(a−7)2+(0−6)2=(a−3)2+(0−4)2{(a-7)^2+(0-6)^2}={(a-3)^2+(0-4)^2}(a−7)2+(0−6)2=(a−3)2+(0−4)2a2−14a+49+36=a2−6a+9+16a^2-14a+49+36=a^2-6a+9+16a2−14a+49+36=a2−6a+9+16−8a+60=0-8a+60=0−8a+60=0−8a=−60-8a=-60−8a=−60a=60/8=15/2a=60/8=15/2a=60/8=15/2=(15/2,0)=(15/2,0)=(15/2,0) Read more in App