App Logo

No.1 PSC Learning App

1M+ Downloads
Find the value of k if x - 2 is a factor of 4x3+3x24x+k4x^3+3x^2-4x+k

A-20

B16

C-36

D12

Answer:

C. -36

Read Explanation:

Factor Theorem:

Given polynomial p(x), if p(a)=0 for some number a, then (x - a) is a linear factor of p(x). Likewise if (x-a) is a linear factor of p(x) then p(a) = 0.

So here

p(2)=0p(2)=0

p(2)=4x3+3x24x+k=0p(2)=4x^3+3x^2-4x+k=0

4(23)+3(22)4(2)+k=04(2^3)+3(2^2)-4(2)+k=0

32+128+k=032+12-8+k=0

k=36k= -36


Related Questions:

Find the reminder when x³-ax²+6x-a is divided by x-a.

The zeros of the quadratic polynomialx2+kx+kx^2+kx+k:k=0

The product of the roots of 3x² - 13x + 6 = 0 is:
image.png

Find the degree of the polynomial p(x)q(x); p(x)=2x2+4x+2p(x)=2x^2+4x+2,q(x)=4x+6q(x)=4x+6