Find the value of k if x - 2 is a factor of 4x3+3x2−4x+k4x^3+3x^2-4x+k4x3+3x2−4x+k A-20B16C-36D12Answer: C. -36 Read Explanation: Factor Theorem:Given polynomial p(x), if p(a)=0 for some number a, then (x - a) is a linear factor of p(x). Likewise if (x-a) is a linear factor of p(x) then p(a) = 0.So here p(2)=0p(2)=0p(2)=0p(2)=4x3+3x2−4x+k=0p(2)=4x^3+3x^2-4x+k=0p(2)=4x3+3x2−4x+k=04(23)+3(22)−4(2)+k=04(2^3)+3(2^2)-4(2)+k=04(23)+3(22)−4(2)+k=032+12−8+k=032+12-8+k=032+12−8+k=0k=−36k= -36k=−36 Read more in App