App Logo

No.1 PSC Learning App

1M+ Downloads
Find the value of k if x - 2 is a factor of 4x3+3x24x+k4x^3+3x^2-4x+k

A-20

B16

C-36

D12

Answer:

C. -36

Read Explanation:

Factor Theorem:

Given polynomial p(x), if p(a)=0 for some number a, then (x - a) is a linear factor of p(x). Likewise if (x-a) is a linear factor of p(x) then p(a) = 0.

So here

p(2)=0p(2)=0

p(2)=4x3+3x24x+k=0p(2)=4x^3+3x^2-4x+k=0

4(23)+3(22)4(2)+k=04(2^3)+3(2^2)-4(2)+k=0

32+128+k=032+12-8+k=0

k=36k= -36


Related Questions:

Find the reminder when x3bx2+6xbx^3-bx^2+6x-bis divided by xbx-b

Find the value of k if x - 1 is a factor of 4x3+3x2+4x+k4x^3+3x^2+4x+k

Simplify: 6(x32x2+3x)(x3+2x3)6(x ^ 3 - 2x ^ 2 + 3x) - (x ^ 3 + 2x - 3)
image.png

If a and b are the roots of x2+x2=0x^2 + x - 2 = 0, then the quadratic equation in x whose roots are 1a+1b\frac1a + \frac1b and ab is: