App Logo

No.1 PSC Learning App

1M+ Downloads
Find the value of k if x - 2 is a factor of 4x3+3x24x+k4x^3+3x^2-4x+k

A-20

B16

C-36

D12

Answer:

C. -36

Read Explanation:

Factor Theorem:

Given polynomial p(x), if p(a)=0 for some number a, then (x - a) is a linear factor of p(x). Likewise if (x-a) is a linear factor of p(x) then p(a) = 0.

So here

p(2)=0p(2)=0

p(2)=4x3+3x24x+k=0p(2)=4x^3+3x^2-4x+k=0

4(23)+3(22)4(2)+k=04(2^3)+3(2^2)-4(2)+k=0

32+128+k=032+12-8+k=0

k=36k= -36


Related Questions:

Zeros of p(x)=x227p(x) = x^2-27are:

image.png
Simplify 3(3x2)+x(4x2)+1512.3(3x - 2) + x(\frac{4x}{2})+15-12.
If a + b = 56 and (a - b)² = 496, find the value of product of a and b.
If x²+2x+9 = (x-2)(x-3), then the resultant equation is: