For a thin spherical shell subjected to internal pressure, the ratio of volumetric strain to diametrical strain is.A5:4B3:2C2:1D3:1Answer: D. 3:1 Read Explanation: For the thin spherical shell, the Hoop strain/longitudinal strain is, ϵL=ϵh=pd4tE(1−μ)\epsilon_{L} = \epsilon_{h} = \frac{pd}{4tE} (1 - \mu)ϵL=ϵh=4tEpd(1−μ) For the thin spherical shell, the Volumetric strain is, ϵV=3ϵh=3pd4tE(1−μ)\epsilon_{V} = 3\epsilon_{h} = \frac{3pd}{4tE} (1 - \mu)ϵV=3ϵh=4tE3pd(1−μ) The ratio of volumetric strain to diametrical strain is ϵVϵD=ϵVϵh=31\frac{\epsilon_{V}}{\epsilon_{D}} =\frac {\epsilon_{V}}{\epsilon_{h}} =\frac 31ϵDϵV=ϵhϵV=13 Read more in App