Challenger App

No.1 PSC Learning App

1M+ Downloads

Given that 4tanA = 3 , then the value of4sinAcosA4sinA+cosA\frac{4sinA-cosA}{4sinA+cosA} is

A1/2

B1/√2

C0

D1/√2

Answer:

A. 1/2

Read Explanation:

4 tanA = 3

tanA = 3/4

tan A = opposite side/adjascent side

hypotnuse² = 3² + 4²

hypotnuse² = 9 + 16

hypotnuse = 5

sinA = 3/5

cosA= 4/5

4sinAcosA4sinA+cosA=(4×35)45(4×35)+45\frac{4sinA-cosA}{4sinA+cosA} =\frac{(4 \times \frac{3}{5})-\frac{4}{5}}{(4 \times \frac{3}{5})+\frac{4}{5}}

=12545125+45=\frac{\frac{12}{5}-\frac{4}{5}}{\frac{12}{5}+\frac{4}{5}}

8/516/5=816=12\frac{8/5}{16/5}=\frac{8}{16}=\frac{1}{2}


Related Questions:

If cos A + cos B + cos C = 3, then what is the value of sin A + sin B + sin C?
image.png
image.png
A triangle is to be drawn with one side 6cm and an angle on it is 30 what should be the minimum length of the side opposite to this angle?
image.png
image.png