How many terms of the GP : 3, 3/2, 3/4,... are needed to give the sum 3069/512?A8B10C12D15Answer: B. 10 Read Explanation: a=3,r=1/2a=3, r = 1/2a=3,r=1/2Sn=a(1−rn)1−rS_n=\frac{a(1-r^n)}{1-r}Sn=1−ra(1−rn)3069/512=3(1−(1/2)n)1−1/23069/512=\frac{3(1-(1/2)^n)}{1-1/2}3069/512=1−1/23(1−(1/2)n)3069/512=6(1−(1/2)n)3069/512=6(1-(1/2)^n)3069/512=6(1−(1/2)n)3069/3072=1−(1/2)n)3069/3072=1-(1/2)^n)3069/3072=1−(1/2)n)(1/2)n=1−(3069/3072)(1/2)^n=1-(3069/3072)(1/2)n=1−(3069/3072)1/2n=3/30721/2^n=3/30721/2n=3/30721/2n=1/10241/2^n=1/10241/2n=1/10242n=1024=2102^n=1024=2^{10}2n=1024=210n=10n=10n=10 Read more in App