App Logo

No.1 PSC Learning App

1M+ Downloads
How many terms of the GP : 3, 3/2, 3/4,... are needed to give the sum 3069/512?

A8

B10

C12

D15

Answer:

B. 10

Read Explanation:

a=3,r=1/2a=3, r = 1/2

Sn=a(1rn)1rS_n=\frac{a(1-r^n)}{1-r}

3069/512=3(1(1/2)n)11/23069/512=\frac{3(1-(1/2)^n)}{1-1/2}

3069/512=6(1(1/2)n)3069/512=6(1-(1/2)^n)

3069/3072=1(1/2)n)3069/3072=1-(1/2)^n)

(1/2)n=1(3069/3072)(1/2)^n=1-(3069/3072)

1/2n=3/30721/2^n=3/3072

1/2n=1/10241/2^n=1/1024

2n=1024=2102^n=1024=2^{10}

n=10n=10


Related Questions:

In the given figure AB || CD, CD || EF and Y : Z = 5 : 11 then find x.

image.png
The sum of the three numbers in a GP is 26 their product is 216 . Find the numbers :
Find the 10th term in the GP: 5, 10, 20, ...
The 7th term of a GP is 8 times of 4th term. What will be the first term if 5th term is 48?
3നും 81 നും ഇടയിൽ രണ്ടു സംഖ്യകൾ ചേർക്കുക. അങ്ങനെ ചേർക്കുന്ന ഒരു ക്രമം സമഗുണിത ശ്രേണിയാണ് എങ്കിൽ ആ രണ്ട സംഖ്യകൾ ഏതെല്ലാം ?