Challenger App

No.1 PSC Learning App

1M+ Downloads

If 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy), then what is the value of (A + B - C)?

A13

B16

C18

D11

Answer:

B. 16

Read Explanation:

Solution:

Given :

 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy)

Formula used :

P3 - q3 = (p - q) (p2 + q2 + pq)

Calculations :

27(x + y)3 - 8(x - y)3 = [3(x + y)]3 - [2(x - y)]3

we use given formula above

⇒ [3(x + y) - 2(x - y)]  [(3x + 3y)2 + (2x - 2y)2 + 3(x + y) × 2(x - y)]

⇒ (x + 5y) (19x2 + 7y2 + 10xy)

Now compare (x + 5y) (19x2 + 7y2 + 10xy) with (x + 5y)(Ax2 + By2 + Cxy)

We will get A = 19, B = 7 and C = 10 

So, 

A + B - C = 19 + 7 - 10 

⇒ 16 

∴ The value of A + B - C is 16


Related Questions:

Find the nature of roots of the quadratic equation:

x2+16x+64=0x^2+16x+64=0

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is:

If a + b =5 and ab = 6 finda3+b3a^3+b^3

(6.42-3.62) / 2.8 എത്ര ?

ഒരു സംഖ്യയുടെ 4 മടങ്ങ് ആ സംഖ്യയെക്കാൾ 2 കുറവായ സംഖ്യയുടെ 5 മടങ്ങിനേക്കാൾ ഒന്ന് കൂടുതലാണ് . എങ്കിൽ ആദ്യത്തെ സംഖ്യ