Challenger App

No.1 PSC Learning App

1M+ Downloads

If 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy), then what is the value of (A + B - C)?

A13

B16

C18

D11

Answer:

B. 16

Read Explanation:

Solution:

Given :

 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy)

Formula used :

P3 - q3 = (p - q) (p2 + q2 + pq)

Calculations :

27(x + y)3 - 8(x - y)3 = [3(x + y)]3 - [2(x - y)]3

we use given formula above

⇒ [3(x + y) - 2(x - y)]  [(3x + 3y)2 + (2x - 2y)2 + 3(x + y) × 2(x - y)]

⇒ (x + 5y) (19x2 + 7y2 + 10xy)

Now compare (x + 5y) (19x2 + 7y2 + 10xy) with (x + 5y)(Ax2 + By2 + Cxy)

We will get A = 19, B = 7 and C = 10 

So, 

A + B - C = 19 + 7 - 10 

⇒ 16 

∴ The value of A + B - C is 16


Related Questions:

100 രൂപ ചില്ലറ ആക്കിയപ്പോൾ 20 ന്റെയും 10 ന്റെയും നോട്ടുകളാണ് കിട്ടിയത്. ആകെ 7 നോട്ടുകൾ എങ്കിൽ 20 എത്ര നോട്ടുകൾ ഉണ്ട് ?

If x + y = 4, then the value of (x3 + y3 + 12xy) is

If m and n are positive integers and 4m + 9n is a multiple of 11, which of the following is also a multiple of 11?
a3+b3=218a^3+b^3=218anda+b=2a+b=2then the value of 1ab\sqrt{1-ab}