Challenger App

No.1 PSC Learning App

1M+ Downloads

If x + y = 4, then the value of (x3 + y3 + 12xy) is

A64

B16

C4

D256

Answer:

A. 64

Read Explanation:

Solution:

Given:

x + y = 4

Formula Used:

(x + y)3 = x3 + y3 + 3xy (x + y)

Calculation:

Here, x + y = 4

So, x3 + y3 + 12xy = x3 + y3 + 3xy ×\times 4

⇒ x3 + y3 + 12xy = x3 + y3 + 3xy (x + y) = (x + y)3

⇒ x3 + y3 + 12xy = 43

⇒ x3 + y3 + 12xy = 64

∴ The value of x3 + y3 + 12xy is 64.


Related Questions:

രണ്ടു സംഖ്യകളുടെ തുക 6 അവയുടെ ഗുണനഫലം 8, എങ്കിൽ അവയുടെ വ്യുൽക്രമങ്ങളുടെ തുക എന്ത്

If a+1/a=2a + 1/a =2 what is a2024+1a2024=?a^{2024}+\frac{1}{a^{2024}}=?

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?

If x=31x =\sqrt{3} - 1 and y=3+1y =\sqrt{3}+1 then (x4y4)(x+y)2\frac{(x^4-y^4)}{(x+y)^2} is equal to ?

Is (x2)2+1=2x3(x-2)^2+1=2x-3 a quadratic equation, then find the roots