Challenger App

No.1 PSC Learning App

1M+ Downloads

If 2(a2+b2)=(a+b)22(a^2 + b^2) = (a + b)^2 then,

Aa = b

Bb = 2a

Ca = 2b

Da = -b

Answer:

A. a = b

Read Explanation:

Given:

2(a2+b2)=(a+b)22(a^2+b^2)=(a+b)^2

Formula used:

(a+b)2=(a2+b2+2ab)(a+b)^2=(a^2+b^2+2ab)

Calculation:

According to the question:

2(a2+b2)=(a+b)22(a^2+b^2)=(a+b)^2

⇒ 2(a2+b2)=(a2+b2+2ab)2(a^2+b^2)=(a^2+b^2+2ab)

2a2+2b2=a2+b2+2ab2a^2+2b^2=a^2+b^2+2ab

2a2+2b2a2b22ab=02a^2+2b^2-a^2-b^2-2ab=0

a2+b22ab=0a^2+b^2-2ab=0

(ab)2=0(a-b)^2=0

⇒ a – b = 0

⇒ a = b

∴ The answer is a = b.


Related Questions:

If x + y + z = 19, xyz = 216 and xy + yz + zx = 114, then the value of x3+y3+z3+xyz\sqrt{x^3+y^3+z^3+xyz} is.

The distance between two points (-6,y) and (18,6) is 26 units.Find the value of y

If 4x - 3y = 12 and xy = 5 , then find the value of16x2+9y28\frac{16x^2+9y^2}{8}

The square of a term in the arithmetic sequence 2, 5, 8, ..., is 2500, What is its position
Equation of the line passing through the points (1,-1) and (3,5) :