Challenger App

No.1 PSC Learning App

1M+ Downloads

If 2(a2+b2)=(a+b)22(a^2 + b^2) = (a + b)^2 then,

Aa = b

Bb = 2a

Ca = 2b

Da = -b

Answer:

A. a = b

Read Explanation:

Given:

2(a2+b2)=(a+b)22(a^2+b^2)=(a+b)^2

Formula used:

(a+b)2=(a2+b2+2ab)(a+b)^2=(a^2+b^2+2ab)

Calculation:

According to the question:

2(a2+b2)=(a+b)22(a^2+b^2)=(a+b)^2

⇒ 2(a2+b2)=(a2+b2+2ab)2(a^2+b^2)=(a^2+b^2+2ab)

2a2+2b2=a2+b2+2ab2a^2+2b^2=a^2+b^2+2ab

2a2+2b2a2b22ab=02a^2+2b^2-a^2-b^2-2ab=0

a2+b22ab=0a^2+b^2-2ab=0

(ab)2=0(a-b)^2=0

⇒ a – b = 0

⇒ a = b

∴ The answer is a = b.


Related Questions:

ഒരു സംഖ്യയുടെ 4 മടങ്ങ് ആ സംഖ്യയെക്കാൾ 2 കുറവായ സംഖ്യയുടെ 5 മടങ്ങിനേക്കാൾ ഒന്ന് കൂടുതലാണ് . എങ്കിൽ ആദ്യത്തെ സംഖ്യ

The fraction to be added toy210y/11+11/121y^2-10y/11 +11/121make it a perfect square is:

If a - b = 4 and a3 - b3 = 88, then find the value of a2 - b2.

The factors of x3-4x2+x+6 is:

If (10a3 + 4b3) : (11a3 - 15b3) = 7 : 5, then (3a + 5b) : (9a - 2b) =?