Challenger App

No.1 PSC Learning App

1M+ Downloads

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

A16

B72

C48

D64

Answer:

B. 72

Read Explanation:

Solution:

Given:

2x + y = 6

xy = 4

Formula:

(x + y)2 = x2 + y2 + 2xy

x3 + y3 = (x + y) (x2 + y2 - xy)

Calculation:

2x + y = 6

xy = 4

⇒ (2x + y)2 = 4x2 + y2 + 4xy

⇒ 62 = 4x2 + y2 + 4 ×\times 4

⇒ 4x2 + y2 = 36 - 16

⇒ 4x2 + y2 = 20

Now,

(2x)3 + y3 = (2x + y) (4x2 + y2 - 2xy)

⇒ 8x3 + y3 = 6 (20 - 2 ×\times 4)

⇒ 8x3 + y3 = 6 ×\times (20 - 8)

⇒ 8x3 + y3 = 6 ×\times 12

∴ 8x3 + y3 = 72


Hence option (B) is correct answer.


Related Questions:

If the sum and product of two numbers are respectively 40 and 375, then their difference is

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?

If x=31x =\sqrt{3} - 1 and y=3+1y =\sqrt{3}+1 then (x4y4)(x+y)2\frac{(x^4-y^4)}{(x+y)^2} is equal to ?

Find the slope of the line joining the points (4,4) and (6,8) ?
x = 100, y = 0.05 ആയാൽ ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഏറ്റവും വലുത് ഏത് ?