Challenger App

No.1 PSC Learning App

1M+ Downloads

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

A16

B72

C48

D64

Answer:

B. 72

Read Explanation:

Solution:

Given:

2x + y = 6

xy = 4

Formula:

(x + y)2 = x2 + y2 + 2xy

x3 + y3 = (x + y) (x2 + y2 - xy)

Calculation:

2x + y = 6

xy = 4

⇒ (2x + y)2 = 4x2 + y2 + 4xy

⇒ 62 = 4x2 + y2 + 4 ×\times 4

⇒ 4x2 + y2 = 36 - 16

⇒ 4x2 + y2 = 20

Now,

(2x)3 + y3 = (2x + y) (4x2 + y2 - 2xy)

⇒ 8x3 + y3 = 6 (20 - 2 ×\times 4)

⇒ 8x3 + y3 = 6 ×\times (20 - 8)

⇒ 8x3 + y3 = 6 ×\times 12

∴ 8x3 + y3 = 72


Hence option (B) is correct answer.


Related Questions:

If x2+1/x2=23x ^ 2 + 1 / x ^ 2 =23 find the value of x+1/xx + 1 / x

If 4a+15a=44a+\frac{1}{5a}=4 , then the value of 25a2+116a225a^2+\frac{1}{16a^2} is:

If x2+1/x2=7x ^ 2 + 1 / x ^ 2 = 7 find the value of x+1/xx + 1 / x

If a+1/a=2a + 1/a =2 what is a2024+1a2024=?a^{2024}+\frac{1}{a^{2024}}=?

If a + b = 11 and ab = 15, then a2+b2a^2 + b^2 is equal to: