Challenger App

No.1 PSC Learning App

1M+ Downloads

If x=31x =\sqrt{3} - 1 and y=3+1y =\sqrt{3}+1 then (x4y4)(x+y)2\frac{(x^4-y^4)}{(x+y)^2} is equal to ?

A4394\sqrt{3}{9}

B943{9}{4\sqrt{3}}

C433\frac{-4\sqrt{3}}{3}

D833\frac{-8\sqrt{3}}{3}

Answer:

833\frac{-8\sqrt{3}}{3}

Read Explanation:

Solution:

Given:

x = √3 - 1

y = √3 + 1

Formula used:

(x4 - y4) = (x - y) (x + y) (x2+ y2)

(x+y)2=x2+y2+2xy(x+y)^2=x^2+y^2+2xy

Calculation:

(x4y4)(x=y)2=(xy)(x+y)(x2+y2)x2+y2+2xy\frac{(x^4-y^4)}{(x=y)^2}=\frac{(x-y)(x+y)(x^2+y^2)}{x^2+y^2+2xy}

⇒x4 - y= [√3 - 1 - (√3 + 1)][√3 - 1 + √3 + 1] [(√3 + 1)2 + (√3 - 1)2]  --------(1)

⇒ (x + y)2 = (√3 - 1)2 + (√3 + 1)2 + 2(√3 - 1)(√3 + 1)   ---------(2)

On solving equation (1) and (2) separately we get:

x4 - y4 = -32√3

(x + y)2 = 12

x4y4(x+y)2=32312\frac{x^4-y^4}{(x+y)^2}=\frac{-32\sqrt{3}}{12}

833\frac{-8\sqrt{3}}{3}

∴ The correct answer is 833\frac{-8\sqrt{3}}{3}


Related Questions:

If a = 299, b = 298, c = 297 then the value of 2a3 + 2b3 + 2c3 – 6abc is:

a-(b-(c-d)) =................
ഗീതുവിൻറെ ബാഗിൽ എത്ര പുസ്തകങ്ങളുണ്ടെന്ന് ചോദിച്ചു. ഫിക്ഷനുകളെല്ലാം ആറെണ്ണമുണ്ടെന്നും പൊതുവിജ്ഞാന പുസ്തകങ്ങൾ മൂന്നെണ്ണമുണ്ടെന്നും എല്ലാ നോവലുകളും അഞ്ചെണ്ണമാണെന്നും അവൾ മറുപടി നൽകി. അവൾക്ക് ആകെ എത്ര പുസ്തകങ്ങൾ ഉണ്ടായിരുന്നു?
If the difference of two natural numbers is 3 and their sum is 27, then the product of the numbers is

If x + y + z = 19, xyz = 216 and xy + yz + zx = 114, then the value of x3+y3+z3+xyz\sqrt{x^3+y^3+z^3+xyz} is.