Challenger App

No.1 PSC Learning App

1M+ Downloads
If (4x+1)/ (x+1) = 3x/2 then the value of x is:

A1/2

B2

C1

D2/3

Answer:

B. 2

Read Explanation:

(4x+1)(x+1)=3x2\frac{(4x+1)}{ (x+1)} = \frac{3x}{2}

(4x+1)2=3x(x+1)(4x+1)2=3x(x+1)

8x+2=3x2+3x8x+2=3x^2+3x

3x25x2=03x^2-5x-2=0

Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} with a=3a=3, b=5b=-5, and c=2c=-2:

x=(5)±(5)24(3)(2)2(3)x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-2)}}{2(3)}

x=5±25+246x = \frac{5 \pm \sqrt{25 + 24}}{6}

x=5±496x = \frac{5 \pm \sqrt{49}}{6}

x=5±76x = \frac{5 \pm 7}{6}

This gives two possible solutions for xx:

  • x1=5+76=126=2x_1 = \frac{5 + 7}{6} = \frac{12}{6} = 2

  • x2=576=26=13x_2 = \frac{5 - 7}{6} = \frac{-2}{6} = -\frac{1}{3}

The possible values of xx are 2\mathbf{2} and 13\mathbf{-\frac{1}{3}}.


Related Questions:

What should come in place of the question mark (?) in the following questions?

62×102÷62×62×62=?\frac{6}{2}\times\frac{10}{2}\div{\frac{6}{2}}\times{\frac{6}{2}}\times{6^2}=?

15+152+153=\frac15+\frac{1}{5^2}+\frac{1}{5^3}=

ഒരു സംഖ്യയിൽ നിന്ന് 3/8 കുറച്ചു. ഇങ്ങനെ കിട്ടിയ സംഖ്യയിൽ നിന്ന് 1/8 കുറച്ചപ്പോൾ 5/12 കിട്ടി. എന്നാൽ ആദ്യത്തെ സംഖ്യയെത്ര?
2⅕ + 3⅖ + 4⅖ + 1 =
5 ൻ്റെ 4⅓ മടങ്ങ് എത്ര?