Challenger App

No.1 PSC Learning App

1M+ Downloads

If a = 299, b = 298, c = 297 then the value of 2a3 + 2b3 + 2c3 – 6abc is:

A5152

B5267

C5364

D5456

Answer:

C. 5364

Read Explanation:

Solution:

Given:

a = 299

b = 298

c = 297

Formula used:

[a3 + b3 + c3 – 3abc] = 12×\frac{1}{2}\times (a + b + c)[(a – b)2 + (b – c)2 + (c – a)2]

Calculation:

2a3 + 2b3 + 2c3 – 6abc

= 2[a3 + b3 + c3 – 3abc]

= 2×12×2\times{\frac{1}{2}}\times (a + b + c)[(a – b)2 + (b – c)2 + (c – a)2]

= (299 + 298 + 297) [(299 – 298)2 + (298 – 297)2 + (297 – 299)2]

= 894 [12 + 12 + 22]

= 894×6894 \times{6}

= 5364


Related Questions:

If a + b = 11 and ab = 15, then a2+b2a^2 + b^2 is equal to:

If x479x2+1=0x^4-79x^2+1=0then the value of x+x1x+x^{-1} can be;

Which among the following quadratic equation has no real solution?
Find forth term in the expansion of (x-2y)¹²

If (m-n)2=64 and mn=180, then (m+n)² is: