Challenger App

No.1 PSC Learning App

1M+ Downloads

If a + b = 11 and ab = 15, then a2+b2a^2 + b^2 is equal to:

A90

B91

C93

D92

Answer:

B. 91

Read Explanation:

Given:

a + b = 11 and ab = 15

Formula:

(a + b)2 = a2 + b2 + 2ab

Calculation:

(a+b)2=a2+b2+2ab(a+b)^2=a^2+b^2+2ab

112=a2+b2+2×1511^2=a^2+b^2+2\times{15}

⇒ a2 + b2 = 121 - 30

∴ a2 + b2 = 91


Related Questions:

If (4y4y)=11(4y-\frac{4}{y})=11 , find the value of (y2+1y2)(y^2+\frac{1}{y^2}) .

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is:

If b² - 4ac < 0 then the roots of the quadratic equation are _____
The product of a number and 2 more than that is 168, what are the numbers?
ഒരു സംഖ്യയുടെ ഇരട്ടിയും പകുതിയും കാൽഭാഗവും ഒന്നും ചേർന്നാൽ 100 കിട്ടും എങ്കിൽ സംഖ്യയേത് ?