Challenger App

No.1 PSC Learning App

1M+ Downloads

If a = 299, b = 298, c = 297 then the value of 2a3 + 2b3 + 2c3 – 6abc is:

A5152

B5267

C5364

D5456

Answer:

C. 5364

Read Explanation:

Solution:

Given:

a = 299

b = 298

c = 297

Formula used:

[a3 + b3 + c3 – 3abc] = 12×\frac{1}{2}\times (a + b + c)[(a – b)2 + (b – c)2 + (c – a)2]

Calculation:

2a3 + 2b3 + 2c3 – 6abc

= 2[a3 + b3 + c3 – 3abc]

= 2×12×2\times{\frac{1}{2}}\times (a + b + c)[(a – b)2 + (b – c)2 + (c – a)2]

= (299 + 298 + 297) [(299 – 298)2 + (298 – 297)2 + (297 – 299)2]

= 894 [12 + 12 + 22]

= 894×6894 \times{6}

= 5364


Related Questions:

x, y, z എന്നിവ ഏതെങ്കിലും മൂന്ന് സംഖ്യകളായാൽ, x - y - z നു തുല്യമായത്
(b – c)(b + c) + (c – a)(c + a) + (a – b) (a + b) എന്നതിൻ്റെ മൂല്യം കണ്ടെത്തുക

If a- =1/a=3, then what is a3-1/a3 ?

Solve (y24)/3=20(y^2 - 4)/3 = 20.

If the sum and product of two numbers are respectively 40 and 375, then their difference is