Challenger App

No.1 PSC Learning App

1M+ Downloads

If a + b = 10 and 37\frac{3}{7} of ab = 9, then the value of a3 + b3 is:

A350

B370

C270

D360

Answer:

B. 370

Read Explanation:

Solution:

Given:

a + b = 10 

37\frac{3}{7} of ab = 9

Formula:

a3 + b3 = (a + b) [(a + b)2 - 3ab]

Calculation:

37\frac{3}{7} of ab = 9

⇒ ab = 9×(73)9\times(\frac{7}{3})

⇒ ab = 21

a3 + b3 = (a + b) [(a + b)2 - 3ab]

⇒ a3 + b3 = 10 ×\times [102 - 3 ×\times 21]

⇒ a3 + b3 = 10 ×\times [100 - 63]

⇒ a3 + b3 = 10 ×\times 37 = 370.


Related Questions:

P(x)= x²+ax+b and P(-m)-P(-n)-0. Then (m+1) (n+1) is:
If b² - 4ac < 0 then the roots of the quadratic equation are _____

If 1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}, then what is the value of (2a+3b)?

If a certain amount of money is divided among X persons each person receives RS 256 , if two persons were given Rs 352 each and the remaining amount is divided equally among the other people each of them receives less than or equal to Rs 240 . The maximum possible value of X is :

If (4y4y)=11(4y-\frac{4}{y})=11 , find the value of (y2+1y2)(y^2+\frac{1}{y^2}) .