Challenger App

No.1 PSC Learning App

1M+ Downloads

If a + b = 10 and 37\frac{3}{7} of ab = 9, then the value of a3 + b3 is:

A350

B370

C270

D360

Answer:

B. 370

Read Explanation:

Solution:

Given:

a + b = 10 

37\frac{3}{7} of ab = 9

Formula:

a3 + b3 = (a + b) [(a + b)2 - 3ab]

Calculation:

37\frac{3}{7} of ab = 9

⇒ ab = 9×(73)9\times(\frac{7}{3})

⇒ ab = 21

a3 + b3 = (a + b) [(a + b)2 - 3ab]

⇒ a3 + b3 = 10 ×\times [102 - 3 ×\times 21]

⇒ a3 + b3 = 10 ×\times [100 - 63]

⇒ a3 + b3 = 10 ×\times 37 = 370.


Related Questions:

9 added to the product of two consecutive multiples of 6 gives 729. What are the numbers?

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:

Find the degree of the following equation: X² - 5X + 6 = (X - 3)(x - 2)
2x - 3y is a factor of:

If (a+1/a3)2=36(a+1/a-3)^2=36then find a2+1/a2a^2+1/a^2