Challenger App

No.1 PSC Learning App

1M+ Downloads

If 1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}, then what is the value of (2a+3b)?

A7

B9

C3

D5

Answer:

C. 3

Read Explanation:

Solution:

Concept used:

(a – b)2 = a2 – 2ab + b2 

Calculations:

1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}

1132×2×2=a+b2\sqrt{11-3\sqrt{2\times{2}\times{2}}}=a+b\sqrt{2}

112×32=a+b2\sqrt{11-2\times{3\sqrt{2}}}=a+b\sqrt{2}

(3)2+(2)22×32=a+b2\sqrt{(3)^2+(\sqrt{2})^2-2\times{3\sqrt{2}}}=a+b\sqrt{2}

(32)2=a+b2\sqrt{(3-\sqrt{2})^2}=a+b\sqrt{2}

322=a+b23-2\sqrt{2} = a + b\sqrt{2}

Compare a and b 

⇒ a = 3 

⇒ b = -1 

Value of (2a + 3b) = 2×3+3×(1)2\times{3}+3\times{(-1)} 

⇒ 6 – 3 = 3 

∴ Value of 2a + 3b is 3


Related Questions:

The value of \6.35×6.35×6.35+3.65×3.65×3.6563.5×63.5+36.5×36.563.5×36.5\frac{6.35 \times 6.35 \times 6.35 + 3.65 \times 3.65 \times 3.65}{63.5 \times 63.5 + 36.5 \times 36.5 - 63.5 \times 36.5} is equal to

9 added to the product of two consecutive multiples of 6 gives 729. What are the numbers?

Find the middle term in the expansion of [x3+9y]10[\frac{x}{3}+9y]^{10}

The sum of a two digit number and the number formed by reversing the digits is always a multiple of
(3x - 6)/x - (4y -6)/y + (6z + 6)/z = 0 ആയാൽ (1/x - 1/y - 1/z) എത്രയാണ്?