Challenger App

No.1 PSC Learning App

1M+ Downloads

If 1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}, then what is the value of (2a+3b)?

A7

B9

C3

D5

Answer:

C. 3

Read Explanation:

Solution:

Concept used:

(a – b)2 = a2 – 2ab + b2 

Calculations:

1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}

1132×2×2=a+b2\sqrt{11-3\sqrt{2\times{2}\times{2}}}=a+b\sqrt{2}

112×32=a+b2\sqrt{11-2\times{3\sqrt{2}}}=a+b\sqrt{2}

(3)2+(2)22×32=a+b2\sqrt{(3)^2+(\sqrt{2})^2-2\times{3\sqrt{2}}}=a+b\sqrt{2}

(32)2=a+b2\sqrt{(3-\sqrt{2})^2}=a+b\sqrt{2}

322=a+b23-2\sqrt{2} = a + b\sqrt{2}

Compare a and b 

⇒ a = 3 

⇒ b = -1 

Value of (2a + 3b) = 2×3+3×(1)2\times{3}+3\times{(-1)} 

⇒ 6 – 3 = 3 

∴ Value of 2a + 3b is 3


Related Questions:

9 added to the product of two consecutive multiples of 6 gives 729. What are the numbers?
ഒരു സംഖ്യയുടെ 4 മടങ്ങ് ആ സംഖ്യയെക്കാൾ 2 കുറവായ സംഖ്യയുടെ 5 മടങ്ങിനേക്കാൾ ഒന്ന് കൂടുതലാണ് . എങ്കിൽ ആദ്യത്തെ സംഖ്യ

If a+1/a=2a + 1/a =2 what is a2024+1a2024=?a^{2024}+\frac{1}{a^{2024}}=?

If x + y = 4, then the value of (x3 + y3 + 12xy) is

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is: