The units digit of 720197^{2019}72019 is A7B9C3D1Answer: C. 3 Read Explanation: (7,10) = 17ϕ(10)≅1(mod10)7^{\phi(10)}≅1(mod10)7ϕ(10)≅1(mod10)74≅1(mod10)7^4≅1(mod10)74≅1(mod10)72019=73(mod10)≅3(mod10)7^{2019}=7^3(mod10)≅3(mod10)72019=73(mod10)≅3(mod10) Read more in App