Challenger App

No.1 PSC Learning App

1M+ Downloads

If a - b = 4 and a3 - b3 = 88, then find the value of a2 - b2.

A868\sqrt{6}

B666\sqrt{6}

C727\sqrt{2}

D$9\sqrt{6}$

Answer:

868\sqrt{6}

Read Explanation:

Given:

a - b = 4 and a3 - b3 = 88

Formula: 

(a3 - b3) = (a - b) (a2 + b2 + ab)

(a3 - b3) = (a - b) [(a - b)2 + 3ab]

(a + b)2 = a2 + b2 + 2ab

(a + b)(a - b) = a2 - b2

Calculation:

According to the formula

88 = 4 ×\times (42 + 3ab)

⇒ 22 = 16 + 3ab

⇒ 3ab = 22 - 16

⇒ ab = 63\frac{6}{3}

⇒ ab = 2

(a - b)2 = a2 + b2 - 2ab

⇒ 42 = a2 + b2 - 2 ×\times 2

⇒ a2 + b2 = 16 + 4 

⇒ a2 + b2 = 20

(a + b)2 = 20 + 2 ×\times 2

⇒ a + b = 24=26\sqrt{24} = 2\sqrt{6}

Then (a + b)(a - b) = 26×42\sqrt{6}\times{4}

868\sqrt{6} 

∴ (a2 - b2) = 868\sqrt{6}


Related Questions:

The value of 5.35×5.35×5.35+3.65×3.65×3.6553.5×53.5+36.5×36.553.5×36.5\frac{5.35\times{5.35}\times{5.35}+3.65\times{3.65}\times{3.65}}{53.5\times{53.5}+36.5\times{36.5}-53.5\times{36.5}} is:

If x-y= 5 , x² - y² = 55 , then what numbers are x and y ?

If the sum of the squares of the digits of a two-digit number is 13, then what would be the sum of all the possible combinations of the digits?

Solve, (x1)2=[4(x4)]2(x-1)^2 = [4\sqrt{(x-4)}]^2

(6.42-3.62) / 2.8 എത്ര ?