Challenger App

No.1 PSC Learning App

1M+ Downloads
If a + b = 8 and ab = 15 then find the value of {a³ + b³}

A260

B152

C124

D98

Answer:

B. 152

Read Explanation:

  1. Identify the given values: You are given a + b = 8 and ab = 15.

  2. Apply the derived identity: Substitute these values into the formula a³ + b³ = (a + b)((a + b)² - 3ab).

  3. Perform the substitution: a³ + b³ = (8)((8)² - 3 * 15)

  4. Calculate the square and product:a³ + b³ = (8)(64 - 45)

  5. Perform the subtraction inside the parenthesis:a³ + b³ = (8)(19)

  6. Calculate the final product:a³ + b³ = 152


Related Questions:

25P¹⁶ എന്ന സംഖ്യയുടെ വർഗ്ഗമൂലം എത്ര?
1 മുതൽ തുടർച്ചയായ 25 ഒറ്റ സംഖ്യകളുടെ തുക എത്ര ആണ്?

The area of a square in x2+4xy+4y2x ^ 2 + 4xy + 4y ^ 2 What is the length of a side of square?

34×52×26 \sqrt {3^4 \times 5^2 \times 2^6}  = _____ ?

image.png