If a + b = 8 and ab = 15 then find the value of {a³ + b³}
A260
B152
C124
D98
Answer:
B. 152
Read Explanation:
Identify the given values: You are given a + b = 8 and ab = 15.
Apply the derived identity: Substitute these values into the formula a³ + b³ = (a + b)((a + b)² - 3ab).
Perform the substitution: a³ + b³ = (8)((8)² - 3 * 15)
Calculate the square and product:a³ + b³ = (8)(64 - 45)
Perform the subtraction inside the parenthesis:a³ + b³ = (8)(19)
Calculate the final product:a³ + b³ = 152