App Logo

No.1 PSC Learning App

1M+ Downloads
If a + b = 8 and ab = 15 then find the value of {a³ + b³}

A260

B152

C124

D98

Answer:

B. 152

Read Explanation:

  1. Identify the given values: You are given a + b = 8 and ab = 15.

  2. Apply the derived identity: Substitute these values into the formula a³ + b³ = (a + b)((a + b)² - 3ab).

  3. Perform the substitution: a³ + b³ = (8)((8)² - 3 * 15)

  4. Calculate the square and product:a³ + b³ = (8)(64 - 45)

  5. Perform the subtraction inside the parenthesis:a³ + b³ = (8)(19)

  6. Calculate the final product:a³ + b³ = 152


Related Questions:

ഒരു സംഖ്യയോട് 2 കൂട്ടിയതിന്റെ വർഗ്ഗം 36 ആയാൽ സംഖ്യയായി വരുവാൻ സാധ്യതയുള്ളത് ഏത് ?
The smallest perfect square which is exactly divisible by 2, 3, 4, 5 and 6:
For what value of A, will the expression (13.56 × 13.56 + 13.56 × A + 0.04 × 0.04) be a perfect square?

52=255^2= 25ആയാൽ (0.5)2=?(0.5)^2=?

Find the smallest number that can be added to 467851 to make the sum a perfect square.