App Logo

No.1 PSC Learning App

1M+ Downloads
If a + b + c = 1904, a ∶ (b + c) = 3 ∶ 13 and b ∶ (a + c) = 5 ∶ 9, then what will be the value of c?

A776

B879

C867

D680

Answer:

C. 867

Read Explanation:

Given : 

a + b + c = 1904

a ∶ (b + c) = 3 ∶ 13

b ∶ (a + c) = 5 ∶ 9

Calculation : 

⇒ a ∶ (b + c) = 3 ∶ 13   --------------(1)

⇒ b  ∶ (a + c) = 5 ∶ 9     ------------------(2)

By adding one on both LHS and RHS of both the equations,

⇒ a + b + c : b + c = 16 : 13

⇒ a + b + c : a + c = 14 : 9 

Now making (a : b : c) same we get

⇒ a + b + c : b + c = 16 : 13 =16×7=16\times{7} : 13×713\times{7} = 112 :  91

⇒ a + b + c : a + c = 14 : 9 = 14×814\times{8} : 9×89\times{8} = 112 : 72

So, 112x = 1904

x=1904112=17⇒x=\frac{1904}{112}=17

Now,b+c=91×17=1547Now,b + c=91\times{17}=1547

a + c = 72×1772\times{17} = 1224

Now a + b + c = 1904

⇒ a + 1547 = 1904, a = 357

⇒ b + 1224 = 1904, b = 680

Now 357 + 680 + c = 1904

⇒ c = 1904 - 357 - 680 = 867

∴ The correct answer is 867.

Alternate Method 

a + b + c = 1904

a ∶ (b + c) = 3 ∶ 13

a(b+c)+1=313+1\frac{a}{(b + c)}+1=\frac{3}{13}+1

a+b+c(b+c)=1613\frac{a+b+c}{(b+c)}=\frac{16}{13}

  

1904(b+c)=1613\frac{1904}{(b+c)}=\frac{16}{13}

 

b+ c = 1547  (i)

similarly,


b ∶ (a + c) = 5 ∶ 9


a+b+c(a+c)=149\frac{a+b+c}{(a+c)}=\frac{14}{9}

     

1904(a+c)=149\frac{1904}{(a+c)}=\frac{14}{9}

 

a+ c = 1224  (ii)

adding Equation (i) & (ii)

a + b + c + c = 1547 +1224

1904 + c = 2771

c = 867

∴ The correct answer is 867.


Related Questions:

If the ratio of the first to second number is 3 : 4 and that of the second to the third number is 8 : 5, and sum of three numbers is 190 then the third number is:
A: B = 7: 9 ഉം B: C = 3: 5 ഉം ആണെങ്കിൽ A: B: C എത്ര ?
615 coins consist of one rupee, 50 paise and 25 paise coins. Their values are in the ratio of 3 : 5 : 7, respectively. Find the number of 50 paise coins.
3x + 8 : 2x +3 = 5 : 3 എങ്കിൽ x-ന്റെ വില എത്ര?
രണ്ടു ഗോളങ്ങളുടെ വ്യാപ്തങ്ങളുടെ അംശബന്ധം 27 : 64 ആയാൽ ഉപരിതല വിസ്തീർണ്ണങ്ങളുടെ അംശബന്ധം _____ ആകുന്നു.