App Logo

No.1 PSC Learning App

1M+ Downloads
If a + b + c = 1904, a ∶ (b + c) = 3 ∶ 13 and b ∶ (a + c) = 5 ∶ 9, then what will be the value of c?

A776

B879

C867

D680

Answer:

C. 867

Read Explanation:

Given : 

a + b + c = 1904

a ∶ (b + c) = 3 ∶ 13

b ∶ (a + c) = 5 ∶ 9

Calculation : 

⇒ a ∶ (b + c) = 3 ∶ 13   --------------(1)

⇒ b  ∶ (a + c) = 5 ∶ 9     ------------------(2)

By adding one on both LHS and RHS of both the equations,

⇒ a + b + c : b + c = 16 : 13

⇒ a + b + c : a + c = 14 : 9 

Now making (a : b : c) same we get

⇒ a + b + c : b + c = 16 : 13 =16×7=16\times{7} : 13×713\times{7} = 112 :  91

⇒ a + b + c : a + c = 14 : 9 = 14×814\times{8} : 9×89\times{8} = 112 : 72

So, 112x = 1904

x=1904112=17⇒x=\frac{1904}{112}=17

Now,b+c=91×17=1547Now,b + c=91\times{17}=1547

a + c = 72×1772\times{17} = 1224

Now a + b + c = 1904

⇒ a + 1547 = 1904, a = 357

⇒ b + 1224 = 1904, b = 680

Now 357 + 680 + c = 1904

⇒ c = 1904 - 357 - 680 = 867

∴ The correct answer is 867.

Alternate Method 

a + b + c = 1904

a ∶ (b + c) = 3 ∶ 13

a(b+c)+1=313+1\frac{a}{(b + c)}+1=\frac{3}{13}+1

a+b+c(b+c)=1613\frac{a+b+c}{(b+c)}=\frac{16}{13}

  

1904(b+c)=1613\frac{1904}{(b+c)}=\frac{16}{13}

 

b+ c = 1547  (i)

similarly,


b ∶ (a + c) = 5 ∶ 9


a+b+c(a+c)=149\frac{a+b+c}{(a+c)}=\frac{14}{9}

     

1904(a+c)=149\frac{1904}{(a+c)}=\frac{14}{9}

 

a+ c = 1224  (ii)

adding Equation (i) & (ii)

a + b + c + c = 1547 +1224

1904 + c = 2771

c = 867

∴ The correct answer is 867.


Related Questions:

Bunty had candies and chewing gums in his sweet box in the ratio 7 ∶ 13. After he had eaten 8 candies and 11 chewing gums, the ratio became 1 ∶ 2. How many candies does he have now?
A, B, C എന്നിവ യഥാക്രമം 26,000, 34,000, 10,000 രൂപ പങ്കാളിത്തത്തിൽ നിക്ഷേപിക്കുന്നു. ലാഭം 350 രൂപയാണെങ്കിൽ. B യുടെ ഓഹരി എത്രയായിരിക്കും?
If A : B = 4 : 5, B : C = 7 : 8 find A : B : C =
If P ∶ Q = 9 ∶ 1, Q ∶ R = 1 ∶ 8 and R ∶ S = 1 ∶ 10, then what is the value of P ∶ R ∶ S respectively?
A water tank is in the form of a right circular cone with radius 3 m and height 14 m. The tank is filled with water at the rate of one cubic metre per second. Find the time taken, in minutes, to fill the tank.