Challenger App

No.1 PSC Learning App

1M+ Downloads

If a + b =6 and ab = 8 finda3+b3a^3+b^3

A12

B46

C72

D84

Answer:

C. 72

Read Explanation:

(a+b)3=a3+b3+3ab+3ab2(a+b)^3=a^3+b^3+3a^b+3ab^2

a3+b3=(a+b)33ab(a+b)a^3+b^3=(a+b)^3-3ab(a+b)

=633×8(6)=6^3-3\times8(6)

=216144=216-144

=72=72


Related Questions:

a-(b-(c-d)) =................

The factors of x3-4x2+x+6 is:

ഒരു സംഖ്യയുടെ ഇരട്ടിയും പകുതിയും കാൽഭാഗവും ഒന്നും ചേർന്നാൽ 100 കിട്ടും എങ്കിൽ സംഖ്യയേത് ?

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:

Which of the following is a point on the line with slope 2 and passing through the point (3,2) ?