Challenger App

No.1 PSC Learning App

1M+ Downloads

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:

A7760

B240

C8000

D8240

Answer:

A. 7760

Read Explanation:

Solution:

Given:

a and b are two positive real numbers such that a + b = 20 and ab = 4. We have to find the value of a3 + b3

Formula Used:

a3 + b3 = (a + b)3 – 3ab(a + b)

Calculation:

a3 + b3 = (a + b)3 – 3ab(a + b)

⇒ a3 + b3 = (20)3 – 3×4×203\times{4}\times{20}       [∵ Given a + b = 20 and ab = 4]

⇒ a3 + b3 = 20 ×\times (202 – 12)

⇒ a3 + b3 = 20 ×\times (400 – 12)

⇒ a3 + b3 = 20 ×\times 388

⇒ a3 + b3 = 7760

∴ Value of a3 + b3 is 7760


Related Questions:

Find the coefficient of x⁵ in (x+3)⁸

If 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy), then what is the value of (A + B - C)?

തുടർച്ചയായ രണ്ട് ഇരട്ട സംഖ്യകളുടെ വർഗ്ഗങ്ങളുടെ വ്യത്യാസം 68 ആയാൽ സംഖ്യകൾ ഏത്?

If (m-n)2=64 and mn=180, then (m+n)² is:

x1x=3x-\frac1{x}=3;x≠0 ആയാൽ x4+1x4=?x^4+\frac1{x^4}=?