Challenger App

No.1 PSC Learning App

1M+ Downloads
If A(2,3) , B(4,6), C(10,15) are three collinear points, then B divides the line segment joining A , C in the ratio:

A1:2

B2:1

C3:1

D1:3

Answer:

D. 1:3

Read Explanation:

x1=2,y1=3,x2=10,y2=15,x=4,y=6x_1=2,y_1=3,x_2=10,y_2=15,x=4,y=6

B(4,6)=(10m+2nm+n,15m+3nm+n)B(4,6)=(\frac{10m+2n}{m+n},\frac{15m+3n}{m+n})

10n+2nm+n=4\frac{10n+2n}{m+n}=4

10m+2n=4m+4n10m+2n=4m+4n

6m=2n6m=2n

mn=26=13\frac{m}{n}=\frac{2}{6}=\frac{1}{3}

15m+3nm+n=6\frac{15m+3n}{m+n}=6

15m+3n=6m+6n15m+3n=6m+6n

9m=3n9m=3n

mn=39=13\frac{m}{n}={3}{9}=\frac{1}{3}


Related Questions:

In a parallelogram two adjacent sides are in the ratio 3: 2 and the perimeter is 65 cm. The length of each of the two shorter sides of this parallelogram is: