If A(2,3) , B(4,6), C(10,15) are three collinear points, then B divides the line segment joining A , C in the ratio:A1:2B2:1C3:1D1:3Answer: D. 1:3 Read Explanation: x1=2,y1=3,x2=10,y2=15,x=4,y=6x_1=2,y_1=3,x_2=10,y_2=15,x=4,y=6x1=2,y1=3,x2=10,y2=15,x=4,y=6B(4,6)=(10m+2nm+n,15m+3nm+n)B(4,6)=(\frac{10m+2n}{m+n},\frac{15m+3n}{m+n})B(4,6)=(m+n10m+2n,m+n15m+3n)10n+2nm+n=4\frac{10n+2n}{m+n}=4m+n10n+2n=410m+2n=4m+4n10m+2n=4m+4n10m+2n=4m+4n6m=2n6m=2n6m=2nmn=26=13\frac{m}{n}=\frac{2}{6}=\frac{1}{3}nm=62=3115m+3nm+n=6\frac{15m+3n}{m+n}=6m+n15m+3n=615m+3n=6m+6n15m+3n=6m+6n15m+3n=6m+6n9m=3n9m=3n9m=3nmn=39=13\frac{m}{n}={3}{9}=\frac{1}{3}nm=39=31 Read more in App