App Logo

No.1 PSC Learning App

1M+ Downloads
If cot A = tan(2A - 45°), A is an acute angle then tan A is equal to:

A3\sqrt{3}

B0

C1

D1/2

Answer:

C. 1

Read Explanation:

Solution:

Given

cot A = tan(2A - 45°)

Concept

cot A = tan(90° - A)

Calculation

⇒ cot A = tan(2A - 45°)

⇒ tan(90° - A) = tan(2A - 45°)

⇒ 90° - A = 2A - 45° 

⇒ A = 45° 

⇒ tan A = tan 45° = 1

∴ The correct answer is 1.


Related Questions:

In a ΔABC right triangle at B. If SinC=6061SinC=\frac{60}{61} and CosA=6061CosA=\frac{60}{61}, then find the value of the expression tanA+cot(A+C)CotC+SecASinC\frac{tanA+cot(A+C)}{CotC+SecASinC}

If cotθ = 4/3, the find the value of 5sinθ + 4cosθ – 3.

cosecθsecθ=?\frac{cosec\theta}{sec\theta}=?

circumradius of an equilateral triangle of sides 8 cm
What is the value of cot 35° cot 40° cot 45° cot 50° cot 55°?