Challenger App

No.1 PSC Learning App

1M+ Downloads

Find the area of the triangle where AB= 4, BC = 6, ∠CAB = 120

1000114764.jpg

A12

B6√3

C8√3

D10

Answer:

B. 6√3

Read Explanation:

Area = 1/2 × ab × sinx : x< 90

= 1/2 × ab × sin(180 - x) : x>90

= 1/2 × 4 × 6 × sin (180 - 120)

= 1/2 × 24 × sin 60

= 12 ×3/2

= 63


Related Questions:

If the arcs of the same lengths in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.
The minute hand of a watch is 1.5cm long.How far does its tip move in 40 minutes ?

The value of 2tan601+tan260=\frac{2tan60}{1+tan^260}=

The value of cosec230sin245+sec260tan60cosec245sec260tan45\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}  is:

cosecθsecθ=?\frac{cosec\theta}{sec\theta}=?