Challenger App

No.1 PSC Learning App

1M+ Downloads
If cot(2θ + 25°) = tan(θ + 20°), then find cot3θ + sec3θ.

A1

B√2

C1 + √2

D2

Answer:

C. 1 + √2

Read Explanation:

cot(2θ + 25°) = tan(θ + 20°) cot(2θ + 25°) = cot(90° -(θ + 20°) 2θ + 25° = 90° - (θ + 20°) 3θ = 45° θ = 15° cot3θ + sec3θ = cot45° + sec45° = 1 + √2


Related Questions:

Find the area of the parallelogram with sides AB = 8, AC = 4, ∠ BAC = 30

1000114769.jpg

what is the ratio of sides of a triangle with angle 45°, 60°, 75°

1000114722.jpg

figure shows a triangle and its circumcircle what is the radius of the circle

AC= 10cm, angle ABC= 60°

1000115094.jpg
If cos (θ + 31°) = sin 47°, then what is the value of sin 5θ?
If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?