App Logo

No.1 PSC Learning App

1M+ Downloads
If cot(2θ + 25°) = tan(θ + 20°), then find cot3θ + sec3θ.

A1

B√2

C1 + √2

D2

Answer:

C. 1 + √2

Read Explanation:

cot(2θ + 25°) = tan(θ + 20°) cot(2θ + 25°) = cot(90° -(θ + 20°) 2θ + 25° = 90° - (θ + 20°) 3θ = 45° θ = 15° cot3θ + sec3θ = cot45° + sec45° = 1 + √2


Related Questions:

What is the value of cot 35° cot 40° cot 45° cot 50° cot 55°?

Find the value of sin235° + sin255°

image.png
Find the value of cos 120° cos 240° cos 180° cos 60°.
What is the area of an equilateral traingle whose each side is 14 cm long?