App Logo

No.1 PSC Learning App

1M+ Downloads
If cot(2θ + 25°) = tan(θ + 20°), then find cot3θ + sec3θ.

A1

B√2

C1 + √2

D2

Answer:

C. 1 + √2

Read Explanation:

cot(2θ + 25°) = tan(θ + 20°) cot(2θ + 25°) = cot(90° -(θ + 20°) 2θ + 25° = 90° - (θ + 20°) 3θ = 45° θ = 15° cot3θ + sec3θ = cot45° + sec45° = 1 + √2


Related Questions:

If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?

Find the area of the parallelogram with sides AB = 6, AC = 3, ∠ BAC = 30

1000114769.jpg
image.png

In the figure AB= BC=CD=DE=AE. <C=<D=90°. what is the measure of <C?

WhatsApp Image 2024-11-30 at 14.45.05.jpeg

Find the Value ofcos30sin30sin60+cos60\frac{\cos 30^\circ - \sin 30^\circ}{\sin 60^\circ + \cos 60^\circ}