Challenger App

No.1 PSC Learning App

1M+ Downloads

Find the value of sin235° + sin255°

A-1

B1/2

C0

D1

Answer:

D. 1

Read Explanation:

Solution:

Formula used:

sin2θ + cos2θ = 1

sinθ = cos(90° – θ)

Calculation:

Our given equation is 

sin235° + sin255° 

⇒ sin235° + Sin2(90° – 35°)

⇒ sin235° + cos235°

⇒ 1

∴ The value of given expression is 1


Related Questions:

Given that 4tanA = 3 , then the value of4sinAcosA4sinA+cosA\frac{4sinA-cosA}{4sinA+cosA} is

circumradius of an equilateral triangle of sides 8 cm

Find the value of cot2θcos2θ\sqrt{cot^2\theta-cos^2\theta}.

sin 1050° = ?

IOf tanθ=2021tan\theta=\frac{20}{21}, then the Value of SinθCosθSinθ+Cosθ\frac{Sin{\theta}-Cos{\theta}}{Sin{\theta}+Cos{\theta}}