Challenger App

No.1 PSC Learning App

1M+ Downloads

If (2a+b)(a+4b)=3\frac{(2a+b)}{(a+4b)}=3, then find the value of a+ba+2b\frac{a+b}{a+2b}

A27\frac{2}{7}

B\fra{9}{7}

C53\frac{5}{3}

D\fra{10}{9}

Answer:

\fra{10}{9}

Read Explanation:

Solution:

Given 2a+ba+4b=3\frac{2a+b}{a+4b}=3

2a+b=3×(a+4b)2a+b=3\times{(a+4b)}

2a+b=3a+12b2a+b=3a+12b

a=11ba=-11b

Substituting this in a+ba+2b\frac{a+b}{a+2b}

=11b+b11b+2b=\frac{-11b+b}{-11b+2b}

=10b9b=\frac{-10b}{-9b}

=109=\frac{10}{9}

Hence Option(D) is the correct answer.


Related Questions:

0.868686......എന്നതിന്റെ ഭിന്നസംഖ്യ രൂപം എന്ത് ?
What will come in the place of '*'? 18/* = 2/7

300[50.20.16]300-[\frac{5-0.2}{0.16}] എത്ര?

The sixth part of a number exceeds the seventh part by 2, the number is
തന്നിരിക്കുന്നതിൽ ചെറുത് ഏത്?