Challenger App

No.1 PSC Learning App

1M+ Downloads

If (2a+b)(a+4b)=3\frac{(2a+b)}{(a+4b)}=3, then find the value of a+ba+2b\frac{a+b}{a+2b}

A27\frac{2}{7}

B\fra{9}{7}

C53\frac{5}{3}

D\fra{10}{9}

Answer:

\fra{10}{9}

Read Explanation:

Solution:

Given 2a+ba+4b=3\frac{2a+b}{a+4b}=3

2a+b=3×(a+4b)2a+b=3\times{(a+4b)}

2a+b=3a+12b2a+b=3a+12b

a=11ba=-11b

Substituting this in a+ba+2b\frac{a+b}{a+2b}

=11b+b11b+2b=\frac{-11b+b}{-11b+2b}

=10b9b=\frac{-10b}{-9b}

=109=\frac{10}{9}

Hence Option(D) is the correct answer.


Related Questions:

2/3 + 1/6 + 5/6 =
12/15, 12/21, 12/28, 12/17 ഈ ഭിന്നങ്ങളുടെ അവരോഹണ ക്രമം എന്ത്?

Which of the given fractions is NOT equal to 917?\frac{9}{17}?

3215272332^{-\frac15}-27^{-\frac23}

(1-1/2)(1-1/3)(1-1/4)=?