Challenger App

No.1 PSC Learning App

1M+ Downloads

The value of cosec230sin245+sec260tan60cosec245sec260tan45\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}  is:

A-3(2 + √3)

B2(√3 - 2)

C3/(2 + √3)

D-3/(√3 - 2)

Answer:

A. -3(2 + √3)

Read Explanation:

Solution:

Given:

(cosec230°sin245° + sec260°)/(tan60°cosec245° - sec260°tan45°)

Concept used:

 

30°

45°

60°

90°

sin

0

1/2

1/√2

√3/2

1

cos

1

√3/2

1/√2

1/2

0

tan

0

1/√3

1

√3

cosec

2

√2

2/√3

1

sec

1

2/√3

√2

2

cot

√3

1

1/√3

0

Calculation:

(cosec230°sin245° + sec260°)/(tan60°cosec245° - sec260°tan45°)

⇒ (4 × 1/2 + 4)/(√3 × 2 – 4 × 1)

⇒ 6/(2√3 – 4)

⇒ 3/(√3 – 2)

Rationalise above value 

⇒ 3/(√3 - 2) 

⇒ - 3/(2 - √3) × (2 + √3)/(2 + √3)

⇒ -3(2 + √3)/{4 - 3} = -3(2 + √3)

∴ The value is -3(2 + √3).



Related Questions:

Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm. (use ∏=22/7)
sin A = 1/2 and cos B = 1/2 , then the value of (A+B) is
If tan 45o + sec 60o = x, fine the value of x.
image.png

If tanθ + cotθ = 2 and θ is acute, then the value of tan100θ +cot100θ is equal to: