App Logo

No.1 PSC Learning App

1M+ Downloads
If tan A = 3, then what is the value of 3 sin A cos A?

A8/9

B9/10

C7/9

D9/11

Answer:

B. 9/10

Read Explanation:

Solution:

Given:

tan A = 3

Concept Used: 

tanθ = Perpendicular/Base

cosθ = Base/Hypotenuse

Pythagoras Theorem

Hypotenuse= Perpendicular2 + Base2

Calculation:

tan A = 3 

⇒ Perpendicular/Base = 3/1

Perpendicular = 3 and Base = 1

Pythagoras Theorem

Hypotenuse2 = Perpendicular2 + Base2

⇒ Hypotenuse2 = 32 + 12

⇒ Hypotenuse2 = 10

⇒ Hypotenuse = √10

⇒ Cos A = 1/√10

⇒ sin A = 3/√10

⇒ 3 sin A cos A = 3 × 3/√10 × 1/√10

⇒ 9/10

∴ Option B is the correct answer.


Related Questions:

If sec 44 cosec (3A-50°), where 44 and 34 are acute angles, find the value of A + 75.

Conert Radian to Degree :

9π3\frac{9\pi}{3}

If cos A + cos B + cos C = 3, then what is the value of sin A + sin B + sin C?

cosecθsecθ=?\frac{cosec\theta}{sec\theta}=?

(tan57° + cot37°)/ (tan33° + cot53° ) =?