Challenger App

No.1 PSC Learning App

1M+ Downloads
If the angles of a triangle are in the ratio 30° , 75° and 75° then the sides are in the ratio

A√2 :√3+1 : √3 + 1

B1 :√3+1 : √3 + 1

C√2 :√3: √3

D√3 :√3+1 : √3 + 1

Answer:

A. √2 :√3+1 : √3 + 1

Read Explanation:

a : b: c = sinA : sin B: sin C = sin 30 : sin 75 : sin 75 sin 75 = (sin 45+30) = sin45cos30+cos45sin30 = 1/√2 . √3/2 + 1/√2 . 1/2 = 1/2 : √3+1/2√2 : √3+1/√2 =√2 + √3+1 : √3+1


Related Questions:

Convert 6 radians into degree measures
If sin A + sin²A = 1, then the value of the expression (cos² A + cos⁴A) =
A triangle is to be drawn with one side 9cm and an angle on it is 30 what should be the minimum length of the side opposiste to this angle?
image.png

In a ΔABC right triangle at B. If SinC=6061SinC=\frac{60}{61} and CosA=6061CosA=\frac{60}{61}, then find the value of the expression tanA+cot(A+C)CotC+SecASinC\frac{tanA+cot(A+C)}{CotC+SecASinC}