App Logo

No.1 PSC Learning App

1M+ Downloads
If the external angle of a regular polygon is 18°, then the number of diagonals in this polygon is:

A180

B150

C170

D140

Answer:

C. 170

Read Explanation:

Solution:

Given:

External angle of a regular polygon is 18°

Formula used:

The number of sides for a regular polygon with an exterior angle of x degrees is n=360xn=\frac{360}{x}

Number of diagonals, 

=>\frac{n\times{(n-3)}}{2}

where n is the number of sides.

Calculation: 

Substitute 18 for x in the above formula.

n=36018=20n=\frac{360}{18}=20

⇒ The number of sides for the given polygon is 20

Using the above formula for the number of diagonals, 

=>\frac{20\times{(20-3)}}{2}

=>\frac{20\times{17}}{2}

=>170

∴ The number of diagonals is 170.


Related Questions:

If each interior angle of a regular polygon is 135°, then the number of sides that polygon has is:
ഒരു സമചതുരത്തിൽ വികർണ്ണത്തിൻറെ നീളം 6 സെ.മീ ആയാൽ പരപ്പളവ് കാണുക ?
The perimeter of two squares are 40 cm and 24 cm. The perimeter of a third square , whose area is equal to the difference of the area of these squares, is
If the sum of the interior angles of a regular polygon measures up to 144 degrees, how many sides does the polygon have?
5 cm ആരമുള്ള ഒരു വൃത്തത്തിൽ നിന്നും 216° കേന്ദ്രകോണുള്ള ഒരു വൃത്താംശം വെട്ടി ഒരു വൃത്തസ്തൂപിക ഉണ്ടാക്കിയാൽ വൃത്തസ്തൂപികയുടെ ആരം എത്ര ?