App Logo

No.1 PSC Learning App

1M+ Downloads
If the external angle of a regular polygon is 18°, then the number of diagonals in this polygon is:

A180

B150

C170

D140

Answer:

C. 170

Read Explanation:

Solution:

Given:

External angle of a regular polygon is 18°

Formula used:

The number of sides for a regular polygon with an exterior angle of x degrees is n=360xn=\frac{360}{x}

Number of diagonals, 

=>\frac{n\times{(n-3)}}{2}

where n is the number of sides.

Calculation: 

Substitute 18 for x in the above formula.

n=36018=20n=\frac{360}{18}=20

⇒ The number of sides for the given polygon is 20

Using the above formula for the number of diagonals, 

=>\frac{20\times{(20-3)}}{2}

=>\frac{20\times{17}}{2}

=>170

∴ The number of diagonals is 170.


Related Questions:

The size of a wooden block is 5 x 10 x 20 cm. How many whole such blocks will be required to construct a solid wooden cube of minimum size?
ഒരു സമചതുരത്തിന്റെ വിസ്തീർണം 16m². വശങ്ങളുടെ മധ്യബിന്ദുക്കൾ യോജിപ്പിച്ചു കിട്ടുന്ന സമചതുരത്തിന്റെ വിസ്തീർണമെന്ത്?
ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ അളവുകളുടെ തുക 8100° ആയാൽ അതിന്റെ വശങ്ങളുടെ എണ്ണം എന്ത് ?

The Length of Rectangle is twice its breadth.If its length is decreased by 64cm and breadth is increased by 6cm, the area of the rectangle increased by 24cm224cm^2. The area of the new rectangle is?

The total surface area of a hemisphere is 462 cm2 .The diameter of this hemisphere is: