Challenger App

No.1 PSC Learning App

1M+ Downloads
If the external angle of a regular polygon is 18°, then the number of diagonals in this polygon is:

A180

B150

C170

D140

Answer:

C. 170

Read Explanation:

Solution:

Given:

External angle of a regular polygon is 18°

Formula used:

The number of sides for a regular polygon with an exterior angle of x degrees is n=360xn=\frac{360}{x}

Number of diagonals, 

=>\frac{n\times{(n-3)}}{2}

where n is the number of sides.

Calculation: 

Substitute 18 for x in the above formula.

n=36018=20n=\frac{360}{18}=20

⇒ The number of sides for the given polygon is 20

Using the above formula for the number of diagonals, 

=>\frac{20\times{(20-3)}}{2}

=>\frac{20\times{17}}{2}

=>170

∴ The number of diagonals is 170.


Related Questions:

The perimeter of Square is twice the perimeter of rectangle if the length and breadth of the rectangle are 7 ∶ 4. Breadth of the rectangle is 28 units. What is the Area of the square?
5 സെന്റിമീറ്റർ നീളവും 4 സെന്റി മീറ്റർ വീതിയും ഉള്ള ചതുരത്തിന്റെ പരപ്പളവിനോട് തുല്യപരപ്പളവുള്ള ഒരു സമചതുരത്തിന്റെ ഒരു വശത്തിന്റെ നീളം ആകാൻ സാധ്യതയുള്ളത് ഏത്?

The area of a sector of a circle is 616 cm2 with a central angle of 10°. The radius of the circle is ______. (use π =227\frac{22}{7} )

Find the volume of a cube whose surface area is 96 cm³.
A cylinder with base radius of 8cm and height of 2 cm is melted to form a cone of height 6cm. Find the radius of the cone