Challenger App

No.1 PSC Learning App

1M+ Downloads

If x1x=3x-\frac{1}{x} = 3, then the value of x31x3x^3-\frac{1}{x^3} is

A36

B63

C99

DNone of these

Answer:

A. 36

Read Explanation:

Solution:

Given:

x1x=3x-\frac{1}{x} = 3

Concept used:

a3 - b3 = (a - b)3 + 3ab(a - b)

Calculation:

x31x3=(x1x)3+3×x×1x×(x1x)x^3-\frac{1}{x^3}=(x-\frac{1}{x})^3+3\times{x}\times{\frac{1}{x}}\times{(x-\frac{1}{x})}

(x1x)3+3(x1x)⇒(x-\frac{1}{x})^3+3(x-\frac{1}{x})

(3)3+3×3⇒(3)^3+3\times{3}

⇒ 27 + 9 = 36

∴ The value of is x31x3x^3-\frac{1}{x^3} 36.


Related Questions:

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

If a = 355, b = 356, c = 357, then find the value of a3+b3+c33abc=a^3+b^3+c^3-3abc=

If x4+1x4=34x^4+\frac{1}{x^4}=34, then the value of (x1x)2(x-\frac{1}{x})^2 will be

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?

If x2+1/x2=38 x^2+1/x^2=38 findx1/xx-1/x