Challenger App

No.1 PSC Learning App

1M+ Downloads

If x1x=3x-\frac{1}{x} = 3, then the value of x31x3x^3-\frac{1}{x^3} is

A36

B63

C99

DNone of these

Answer:

A. 36

Read Explanation:

Solution:

Given:

x1x=3x-\frac{1}{x} = 3

Concept used:

a3 - b3 = (a - b)3 + 3ab(a - b)

Calculation:

x31x3=(x1x)3+3×x×1x×(x1x)x^3-\frac{1}{x^3}=(x-\frac{1}{x})^3+3\times{x}\times{\frac{1}{x}}\times{(x-\frac{1}{x})}

(x1x)3+3(x1x)⇒(x-\frac{1}{x})^3+3(x-\frac{1}{x})

(3)3+3×3⇒(3)^3+3\times{3}

⇒ 27 + 9 = 36

∴ The value of is x31x3x^3-\frac{1}{x^3} 36.


Related Questions:

If (a + b + c) = 17, and (a2 + b2 + c2) = 101, find the value of (a - b)2 + (b - c)2 + (c - a)2.

If a+b=73a+b=\frac{7}{3} and a2+b2=319,a^2+b^2=\frac{31}{9}, find27(a3+b3)27(a^3+b^3)

If x2+1/x2=38 x^2+1/x^2=38 findx1/xx-1/x

The product of a number and 2 more than that is 168, what are the numbers?
Equation of a line passing through (2, 3) which is perpendicular to the line 5x+2y-8-0 is: