Challenger App

No.1 PSC Learning App

1M+ Downloads

If, (x+1x)=4(x+\frac{1}{x})=4, then the value of x4+1x4x^4+\frac{1}{x^4} is:

A64

B194

C81

D124

Answer:

B. 194

Read Explanation:

Solution:

Given:

(x+1x)=4(x+\frac{1}{x})=4,

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculations:

According to the question, we have

Squaring both sides,

x2+1x2+2=16x^2+\frac{1}{x^2}+2=16

x2+1x2=14x^2+\frac{1}{x^2}=14

Squaring both sides again, we get

x4+1x4+2=196x^4+\frac{1}{x^4}+2=196

x4+1x4=1962x^4+\frac{1}{x^4}=196-2

∴ The value of x4+1x4x^4+\frac{1}{x^4}  is 194.


Related Questions:

If (m-n)2=64 and mn=180, then (m+n)² is:

ഒരു സംഖ്യയുടേയും അതിന്റെ വ്യുൽക്രമത്തിന്റേയും തുക 6 ആയാൽ സംഖ്യ ഏത്?
x = 100, y = 0.05 ആയാൽ ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഏറ്റവും വലുത് ഏത് ?

If x + y + z = 10, x3+y3+z3=75x^3 + y^3 + z^3 = 75 and xyz = 15, then find the value of x2+y2+z2xyyzzxx^2 + y^2 + z^2-xy-yz-zx

X @Y = X÷ Y + X ആയാൽ, 6@3 - 2@1 എത്ര?