Challenger App

No.1 PSC Learning App

1M+ Downloads

If, (x+1x)=4(x+\frac{1}{x})=4, then the value of x4+1x4x^4+\frac{1}{x^4} is:

A64

B194

C81

D124

Answer:

B. 194

Read Explanation:

Solution:

Given:

(x+1x)=4(x+\frac{1}{x})=4,

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculations:

According to the question, we have

Squaring both sides,

x2+1x2+2=16x^2+\frac{1}{x^2}+2=16

x2+1x2=14x^2+\frac{1}{x^2}=14

Squaring both sides again, we get

x4+1x4+2=196x^4+\frac{1}{x^4}+2=196

x4+1x4=1962x^4+\frac{1}{x^4}=196-2

∴ The value of x4+1x4x^4+\frac{1}{x^4}  is 194.


Related Questions:

If the sum of two numbers is 11 and the sum of their squares is 65, then the sum of their cubes will be:

Find the factors of the expression 3x25x83x^2-5x-8

ഒരു സമബഹുഭുജത്തിന്റെ ഒരു ആന്തര കോണിന്റെ അളവ് 150 ആണ്. ഈ ബഹുഭുജത്തിന് എത്ര വശങ്ങളുണ്ട് ?
ഗീതുവിൻറെ ബാഗിൽ എത്ര പുസ്തകങ്ങളുണ്ടെന്ന് ചോദിച്ചു. ഫിക്ഷനുകളെല്ലാം ആറെണ്ണമുണ്ടെന്നും പൊതുവിജ്ഞാന പുസ്തകങ്ങൾ മൂന്നെണ്ണമുണ്ടെന്നും എല്ലാ നോവലുകളും അഞ്ചെണ്ണമാണെന്നും അവൾ മറുപടി നൽകി. അവൾക്ക് ആകെ എത്ര പുസ്തകങ്ങൾ ഉണ്ടായിരുന്നു?
The sum of four times a number and 3 times of another number is 43. The difference of two times the second number from three times of the first number is 11. Find the numbers.