In , -25 an arithmetic sequence if 17 is the 3rd term, -25 is the 17th term then which term is -1 ?A8B10C11D9Answer: D. 9 Read Explanation: x3=17;x17=−25x_3=17;x_{17}=-25x3=17;x17=−25d= term difference / position differenced=−25−1717−3d=\frac{-25-17}{17-3}d=17−3−25−17d=−4214d=\frac{-42}{14}d=14−42d=−3d=-3d=−3x1=x3−(3−1)dx_1=x_3-(3-1)dx1=x3−(3−1)dx1=17−2×−3x_1=17-2\times -3x1=17−2×−3x1=17+6=23x_1=17+6=23x1=17+6=23x1+(n−1)d=−1x_1+(n-1)d=-1x1+(n−1)d=−123+(n−1)×−3=−123+(n-1)\times -3=-123+(n−1)×−3=−123−3n+3=−123-3n+3=-123−3n+3=−126−3n=−126-3n=-126−3n=−1−3n=−1−26-3n=-1-26−3n=−1−26−3n=−27-3n=-27−3n=−27n=27/3=9n=27/3=9n=27/3=9 Read more in App