App Logo

No.1 PSC Learning App

1M+ Downloads

210002999=2^{1000}-2^{999}=

A292^9

B2112^{11}

C21112^{111}

D29992^{999}

Answer:

29992^{999}

Read Explanation:

2100029992^{1000}-2^{999}

21×29992999;xm+n=xm×xn2^1\times2^{999}-2^{999};x^{m+n}=x^m\times{x^n}

2999(21)=2999×1=29992^{999}(2-1)=2^{999}\times1=2^{999}


Related Questions:

If 9^{48} is divided by 728 what will be the reminder ?

10×(23)2×(53)2=\sqrt{10\times{\sqrt{(2^3)^2}}\times\sqrt{(5^3)^2}}=

163.5×167.3÷164.2=16x16^{3.5}\times16^{7.3}\div16^{4.2}=16^x ആയാൽ x ൻ്റെ വില കണ്ടെത്തുക 

(23)3×(35)2=({\frac{-2}{3}})^3 \times ({\frac{3}{5}})^2 =

image.png