Challenger App

No.1 PSC Learning App

1M+ Downloads

x=ya,y=zb,z=xcx=y^a,y=z^b,z=x^cആയാൽ abc=?$$

A1

B1/2

C1/xyz

D2

Answer:

A. 1

Read Explanation:

x=ya,y=zb,z=xcx=y^a,y=z^b,z=x^c

x=ya=(zb)ay=zbx=y^a=(z^b)^a\because{y=z^b}

=((xc)b)az=xc=((x^c)^b)^a\because{z=x^c}

=xabc(mn)p=mop=x^{abc}\because{(m^n)^p=m^{op}}

    abc=1x=xabc\implies{abc}=1\because{x=x^{abc}}


Related Questions:

K+ 1/K – 2 = 0, K > 0, ആയാൽ K29 + 1/ K29 - 2 ന്റെ വില എത്ര ആകും ?

32 x 3-4 x 35 is equal to :

9x+3x90=09^x+3^x-90=0എങ്കിൽ x എത്ര ?

62×104×15326×35×56=? \frac {6^2 \times 10^4 \times 15^3} {2^6 \times 3^5 \times 5^6} =?