Challenger App

No.1 PSC Learning App

1M+ Downloads

p(x)=2x2+3x+7p(x) =2x^2+3x+7,q(x)=6x2+8x9q(x)=6x^2+8x-9Find p(x)×q(x)p(x)\times{q(x)}

A12x4+32x3+49x2+28x6312x^4+32x^3+49x^2+28x-63

B12x4+36x3+39x2+31x6312x^4+36x^3+39x^2+31x-63

C12x4+34x3+46x2+27x6312x^4+34x^3+46x^2+27x-63

D12x4+34x3+48x2+29x6312x^4+34x^3+48x^2+29x-63

Answer:

12x4+34x3+48x2+29x6312x^4+34x^3+48x^2+29x-63

Read Explanation:

p(x)=2x2+3x+7p(x) =2x^2+3x+7,q(x)=6x2+8x9q(x)=6x^2+8x-9

p(x)×q(x)=2x2[6x2+8x9]+3x[6x2+8x9]+7[6x2+8x9]p(x)\times{q(x)}=2x^2[6x^2+8x-9]+3x[6x^2+8x-9]+7[6x^2+8x-9]

=12x4+16x318x2+18x3+24x227x+42x2+56x63=12x^4+16x^3-18x^2+18x^3+24x^2-27x+42x^2+56x-63

=12x4+34x3+48x2+29x63=12x^4+34x^3+48x^2+29x-63


Related Questions:

Zeros of p(x)=x227p(x) = x^2-27are:

The dimensions of a cuboid are in the ratio 1:2:3 and its total surface area is 88m². Find the dimensions?

Find the reminder when x4+x32x2+x+1x^4+x^3-2x^2+x+1is divided by x1x-1

Find the zero of the polynomial :p(x)=2x2+13x7p(x)=2x^2+13x-7

Find the zero of the polynomial : 3x+2=03x + 2=0