Challenger App

No.1 PSC Learning App

1M+ Downloads

p(x)=2x2+3x+7p(x) =2x^2+3x+7,q(x)=6x2+8x9q(x)=6x^2+8x-9Find p(x)×q(x)p(x)\times{q(x)}

A12x4+32x3+49x2+28x6312x^4+32x^3+49x^2+28x-63

B12x4+36x3+39x2+31x6312x^4+36x^3+39x^2+31x-63

C12x4+34x3+46x2+27x6312x^4+34x^3+46x^2+27x-63

D12x4+34x3+48x2+29x6312x^4+34x^3+48x^2+29x-63

Answer:

12x4+34x3+48x2+29x6312x^4+34x^3+48x^2+29x-63

Read Explanation:

p(x)=2x2+3x+7p(x) =2x^2+3x+7,q(x)=6x2+8x9q(x)=6x^2+8x-9

p(x)×q(x)=2x2[6x2+8x9]+3x[6x2+8x9]+7[6x2+8x9]p(x)\times{q(x)}=2x^2[6x^2+8x-9]+3x[6x^2+8x-9]+7[6x^2+8x-9]

=12x4+16x318x2+18x3+24x227x+42x2+56x63=12x^4+16x^3-18x^2+18x^3+24x^2-27x+42x^2+56x-63

=12x4+34x3+48x2+29x63=12x^4+34x^3+48x^2+29x-63


Related Questions:

Find a quadratic polynomial, the sum and product of whose zeros are -3 and 2 respectively?
Simplify: 3x(x - 6) + x² + 6x - 9 + 24 - x³
P(x) first degree polynomial P(0)=3 and P(1)=0 then P(x) is
The number of solutions to the pair of linear equations 5x-3y = 7 and 7x + 4y = 18 is:
Find the nature of the roots of x² - 14x + 49 = 0